BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31918595)

  • 1. Design and construction of a Maxwell-type induction coil for magnetic nanoparticle hyperthermia.
    Attaluri A; Jackowski J; Sharma A; Kandala SK; Nemkov V; Yakey C; DeWeese TL; Kumar A; Goldstein RC; Ivkov R
    Int J Hyperthermia; 2020; 37(1):1-14. PubMed ID: 31918595
    [No Abstract]   [Full Text] [Related]  

  • 2. Modified Solenoid Coil That Efficiently Produces High Amplitude AC Magnetic Fields With Enhanced Uniformity for Biomedical Applications.
    Bordelon DE; Goldstein RC; Nemkov VS; Kumar A; Jackowski JK; DeWeese TL; Ivkov R
    IEEE Trans Magn; 2012 Oct; 48(1):47-52. PubMed ID: 25392562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia.
    Kandala SK; Sharma A; Mirpour S; Liapi E; Ivkov R; Attaluri A
    Int J Hyperthermia; 2021; 38(1):611-622. PubMed ID: 33853493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer.
    Shoshiashvili L; Shamatava I; Kakulia D; Shubitidze F
    Cancers (Basel); 2023 Mar; 15(6):. PubMed ID: 36980560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of a single optimized coil and a Helmholtz pair for magnetic nanoparticle hyperthermia.
    Nieskoski MD; Trembly BS
    IEEE Trans Biomed Eng; 2014 Jun; 61(6):1642-50. PubMed ID: 24691525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.
    Wu Z; Zhuo Z; Cai D; Wu J; Wang J; Tang J
    Technol Health Care; 2015; 23 Suppl 2():S203-9. PubMed ID: 26410485
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating.
    Attaluri A; Kandala SK; Zhou H; Wabler M; DeWeese TL; Ivkov R
    Int J Hyperthermia; 2020 Dec; 37(3):108-119. PubMed ID: 33426990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy.
    Stigliano RV; Shubitidze F; Petryk JD; Shoshiashvili L; Petryk AA; Hoopes PJ
    Int J Hyperthermia; 2016 Nov; 32(7):735-48. PubMed ID: 27436449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.
    Rodrigues HF; Mello FM; Branquinho LC; Zufelato N; Silveira-Lacerda EP; Bakuzis AF
    Int J Hyperthermia; 2013 Dec; 29(8):752-67. PubMed ID: 24138472
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vivo coil setup for AC magnetic field-mediated magnetic nanoparticle heating experiments.
    Miaskowski A; Balakrishnan P; Subramanian M; Hovorka O
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3991-3994. PubMed ID: 31946746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HYPER: pre-clinical device for spatially-confined magnetic particle hyperthermia.
    Carlton H; Weber M; Peters M; Arepally N; Lad YS; Jaswal A; Ivkov R; Attaluri A; Goodwill P
    Int J Hyperthermia; 2023; 40(1):2272067. PubMed ID: 37875265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coil system for real-time magnetic fluid hyperthermia microscopy studies.
    Subramanian M; Miaskowski A; Pearce G; Dobson J
    Int J Hyperthermia; 2016; 32(2):112-20. PubMed ID: 26670862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetic nanoparticle density mapping from the magnetically induced displacement data: a simulation study.
    Hossain AA; Cho M; Lee S
    Biomed Eng Online; 2012 Mar; 11():11. PubMed ID: 22394477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Model predictive control (MPC) applied to a simplified model, magnetic nanoparticle hyperthermia (MNPH) treatment process.
    Abu-Ayyad M; Lad YS; Aguilar D; Karami K; Attaluri A
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38692266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focused RF hyperthermia using magnetic fluids.
    Tasci TO; Vargel I; Arat A; Guzel E; Korkusuz P; Atalar E
    Med Phys; 2009 May; 36(5):1906-12. PubMed ID: 19544810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method to reduce non-specific tissue heating of small animals in solenoid coils.
    Kumar A; Attaluri A; Mallipudi R; Cornejo C; Bordelon D; Armour M; Morua K; Deweese TL; Ivkov R
    Int J Hyperthermia; 2013; 29(2):106-20. PubMed ID: 23402327
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of high amplitude alternating magnetic fields for heat induction of nanoparticles localized in cancer.
    Ivkov R; DeNardo SJ; Daum W; Foreman AR; Goldstein RC; Nemkov VS; DeNardo GL
    Clin Cancer Res; 2005 Oct; 11(19 Pt 2):7093s-7103s. PubMed ID: 16203808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.
    Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A
    Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of orthogonal synchronized bi-directional field to enhance heating efficiency of magnetic nanoparticles.
    Chen SW; Lai JJ; Chiang CL; Chen CL
    Rev Sci Instrum; 2012 Jun; 83(6):064701. PubMed ID: 22755645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on the thermal field distribution of cholangiocarcinoma model by magnetic fluid hyperthermia].
    Cai Z; Lu M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):528-538. PubMed ID: 34180199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.