These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 31918595)

  • 21. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Magnetic propulsion of a magnetic device using three square-Helmholtz coils and a square-Maxwell coil.
    Ha YH; Han BH; Lee SY
    Med Biol Eng Comput; 2010 Feb; 48(2):139-45. PubMed ID: 20054666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of a novel loosely wound helical coil for interstitial radiofrequency thermal therapy.
    McCann C; Sherar MD
    Phys Med Biol; 2006 Aug; 51(15):3835-50. PubMed ID: 16861784
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contribution of a 300 kHz alternating magnetic field on magnetic hyperthermia treatment of HepG2 cells.
    Wang X; Chen Y; Huang C; Wang X; Zhao L; Zhang X; Tang J
    Bioelectromagnetics; 2013 Feb; 34(2):95-103. PubMed ID: 23059525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants.
    Stauffer PR; Sneed PK; Hashemi H; Phillips TL
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):17-28. PubMed ID: 8200664
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of intratumor magnetic nanoparticle distribution and heating in a rat model of metastatic spine disease.
    Zadnik PL; Molina CA; Sarabia-Estrada R; Groves ML; Wabler M; Mihalic J; McCarthy EF; Gokaslan ZL; Ivkov R; Sciubba D
    J Neurosurg Spine; 2014 Jun; 20(6):740-50. PubMed ID: 24702509
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Validation of a Temperature-Feedback Controlled Automated Magnetic Hyperthermia Therapy Device.
    Sharma A; Jangam A; Shen JLY; Ahmad A; Arepally N; Rodriguez B; Borrello J; Bouras A; Kleinberg L; Ding K; Hadjipanayis C; Kraitchman DL; Ivkov R; Attaluri A
    Cancers (Basel); 2023 Jan; 15(2):. PubMed ID: 36672278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe
    Suleman M; Riaz S
    J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
    Soetaert F; Dupré L; Ivkov R; Crevecoeur G
    Biomed Tech (Berl); 2015 Oct; 60(5):491-504. PubMed ID: 26351900
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A versatile induction heating system for magnetic hyperthermia studies under different experimental conditions.
    Hadadian Y; Azimbagirad M; Navas EA; Pavan TZ
    Rev Sci Instrum; 2019 Jul; 90(7):074701. PubMed ID: 31370463
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of the temperature rise in magnetic hyperthermia with use of an external static magnetic field.
    Murase K; Takata H; Takeuchi Y; Saito S
    Phys Med; 2013 Nov; 29(6):624-30. PubMed ID: 22985766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization.
    Mejías R; Hernández Flores P; Talelli M; Tajada-Herráiz JL; Brollo MEF; Portilla Y; Morales MP; Barber DF
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):340-355. PubMed ID: 30525392
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using kinetic Monte Carlo simulations to design efficient magnetic nanoparticles for clinical hyperthermia.
    Papadopoulos C; Kolokithas-Ntoukas A; Moreno R; Fuentes D; Loudos G; Loukopoulos VC; Kagadis GC
    Med Phys; 2022 Jan; 49(1):547-567. PubMed ID: 34724215
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The use of a dispersive ground electrode with a loosely wound helical coil for interstitial radiofrequency thermal therapy.
    McCann C; Sherar MD
    Phys Med Biol; 2006 Aug; 51(15):3851-63. PubMed ID: 16861785
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
    T S A; Lu YJ; Chen JP
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of biocompatible and ultrastable superparamagnetic iron(III) oxide nanoparticles doped with magnesium for efficient magnetic fluid hyperthermia in lung cancer cells.
    Nowicka AM; Ruzycka-Ayoush M; Kasprzak A; Kowalczyk A; Bamburowicz-Klimkowska M; Sikorska M; Sobczak K; Donten M; Ruszczynska A; Nowakowska J; Grudzinski IP
    J Mater Chem B; 2023 May; 11(18):4028-4041. PubMed ID: 36960952
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia.
    Attar MM; Haghpanahi M
    Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Consideration of different heating lengths of needles with induction heating and resistance system: A novel design of needle module for thermal ablation.
    Bui HT; Hwang SJ; Lee HH; Huang DY
    Bioelectromagnetics; 2017 Apr; 38(3):220-226. PubMed ID: 28026048
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Liver tumor ablation enhancement by induction-heating system with bitter-like deep magnetic field coil.
    Hung CM; Tai CC
    Rev Sci Instrum; 2022 May; 93(5):054107. PubMed ID: 35649808
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Magnetothermoacoustics from magnetic nanoparticles by short bursting or frequency chirped alternating magnetic field: a theoretical feasibility analysis.
    Piao D; Towner RA; Smith N; Chen WR
    Med Phys; 2013 Jun; 40(6):063301. PubMed ID: 23718611
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.