BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 31919520)

  • 1. Multifaceted Hi-C benchmarking: what makes a difference in chromosome-scale genome scaffolding?
    Kadota M; Nishimura O; Miura H; Tanaka K; Hiratani I; Kuraku S
    Gigascience; 2020 Jan; 9(1):. PubMed ID: 31919520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Technical considerations in Hi-C scaffolding and evaluation of chromosome-scale genome assemblies.
    Yamaguchi K; Kadota M; Nishimura O; Ohishi Y; Naito Y; Kuraku S
    Mol Ecol; 2021 Dec; 30(23):5923-5934. PubMed ID: 34432923
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Hi-C for Plants: An Improved Method to Detect Long-Range Chromatin Interactions.
    Padmarasu S; Himmelbach A; Mascher M; Stein N
    Methods Mol Biol; 2019; 1933():441-472. PubMed ID: 30945203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detecting Spatial Chromatin Organization by Chromosome Conformation Capture II: Genome-Wide Profiling by Hi-C.
    Vietri Rudan M; Hadjur S; Sexton T
    Methods Mol Biol; 2017; 1589():47-74. PubMed ID: 26900130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hi-C 3.0: Improved Protocol for Genome-Wide Chromosome Conformation Capture.
    Lafontaine DL; Yang L; Dekker J; Gibcus JH
    Curr Protoc; 2021 Jul; 1(7):e198. PubMed ID: 34286910
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.
    Peichel CL; Sullivan ST; Liachko I; White MA
    J Hered; 2017 Sep; 108(6):693-700. PubMed ID: 28821183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. qc3C: Reference-free quality control for Hi-C sequencing data.
    DeMaere MZ; Darling AE
    PLoS Comput Biol; 2021 Oct; 17(10):e1008839. PubMed ID: 34634030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CSA: A high-throughput chromosome-scale assembly pipeline for vertebrate genomes.
    Kuhl H; Li L; Wuertz S; Stöck M; Liang XF; Klopp C
    Gigascience; 2020 May; 9(5):. PubMed ID: 32449778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating Hi-C links with assembly graphs for chromosome-scale assembly.
    Ghurye J; Rhie A; Walenz BP; Schmitt A; Selvaraj S; Pop M; Phillippy AM; Koren S
    PLoS Comput Biol; 2019 Aug; 15(8):e1007273. PubMed ID: 31433799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FreeHi-C simulates high-fidelity Hi-C data for benchmarking and data augmentation.
    Zheng Y; Keleş S
    Nat Methods; 2020 Jan; 17(1):37-40. PubMed ID: 31712779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chromosome-level genome assembly of the Asian giant softshell turtle Pelochelys cantorii.
    Hong X; Liu H; Wang Y; Li M; Ji L; Wang K; Wei C; Li W; Chen C; Yu L; Zhu X; Liu X
    Sci Data; 2023 Nov; 10(1):754. PubMed ID: 37914689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient iterative Hi-C scaffolder based on N-best neighbors.
    Guan D; McCarthy SA; Ning Z; Wang G; Wang Y; Durbin R
    BMC Bioinformatics; 2021 Nov; 22(1):569. PubMed ID: 34837944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tethered Chromosome Conformation Capture Sequencing in Triticeae: A Valuable Tool for Genome Assembly.
    Himmelbach A; Walde I; Mascher M; Stein N
    Bio Protoc; 2018 Aug; 8(15):e2955. PubMed ID: 34395764
    [TBL] [Abstract][Full Text] [Related]  

  • 14. C-TALE, a new cost-effective method for targeted enrichment of Hi-C/3C-seq libraries.
    Golov AK; Ulianov SV; Luzhin AV; Kalabusheva EP; Kantidze OL; Flyamer IM; Razin SV; Gavrilov AA
    Methods; 2020 Jan; 170():48-60. PubMed ID: 31252062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization and quality control of genome-wide Hi-C library preparation.
    Zhang XY; He C; Ye BY; Xie DJ; Shi ML; Zhang Y; Shen WL; Li P; Zhao ZH
    Yi Chuan; 2017 Sep; 39(9):847-855. PubMed ID: 28936982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Processing and Quality Control of Hi-C, Capture Hi-C and Capture-C Data.
    Hansen P; Gargano M; Hecht J; Ibn-Salem J; Karlebach G; Roehr JT; Robinson PN
    Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31323892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iteratively improving Hi-C experiments one step at a time.
    Golloshi R; Sanders JT; McCord RP
    Methods; 2018 Jun; 142():47-58. PubMed ID: 29723572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BAT Hi-C maps global chromatin interactions in an efficient and economical way.
    Huang J; Jiang Y; Zheng H; Ji X
    Methods; 2020 Jan; 170():38-47. PubMed ID: 31442560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deciphering High-Resolution 3D Chromatin Organization via Capture Hi-C.
    Hauth A; Galupa R; Servant N; Villacorta L; Hauschulz K; van Bemmel JG; Loda A; Heard E
    J Vis Exp; 2022 Oct; (188):. PubMed ID: 36314814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Easy Hi-C: A Low-Input Method for Capturing Genome Organization.
    Lu L; Jin F
    Methods Mol Biol; 2023; 2599():113-125. PubMed ID: 36427146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.