These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 31919693)

  • 1. Return of the moth: rethinking the effect of climate on insect outbreaks.
    Büntgen U; Liebhold A; Nievergelt D; Wermelinger B; Roques A; Reinig F; Krusic PJ; Piermattei A; Egli S; Cherubini P; Esper J
    Oecologia; 2020 Feb; 192(2):543-552. PubMed ID: 31919693
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 1200 years of regular outbreaks in alpine insects.
    Esper J; Büntgen U; Frank DC; Nievergelt D; Liebhold A
    Proc Biol Sci; 2007 Mar; 274(1610):671-9. PubMed ID: 17254991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Summer temperature dependency of larch budmoth outbreaks revealed by Alpine tree-ring isotope chronologies.
    Kress A; Saurer M; Büntgen U; Treydte KS; Bugmann H; Siegwolf RT
    Oecologia; 2009 May; 160(2):353-65. PubMed ID: 19219459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tree-ring isotopes from the Swiss Alps reveal non-climatic fingerprints of cyclic insect population outbreaks over the past 700 years.
    Vitali V; Peters RL; Lehmann MM; Leuenberger M; Treydte K; Büntgen U; Schuler P; Saurer M
    Tree Physiol; 2023 May; 43(5):706-721. PubMed ID: 36738262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climatic warming disrupts recurrent Alpine insect outbreaks.
    Johnson DM; Büntgen U; Frank DC; Kausrud K; Haynes KJ; Liebhold AM; Esper J; Stenseth NC
    Proc Natl Acad Sci U S A; 2010 Nov; 107(47):20576-81. PubMed ID: 21059922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three centuries of insect outbreaks across the European Alps.
    Büntgen U; Frank D; Liebhold A; Johnson D; Carrer M; Urbinati C; Grabner M; Nicolussi K; Levanic T; Esper J
    New Phytol; 2009 Jun; 182(4):929-941. PubMed ID: 19383093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tree physiological monitoring of the 2018 larch budmoth outbreak: preference for leaf recovery and carbon storage over stem wood formation in Larix decidua.
    Peters RL; Miranda JC; Schönbeck L; Nievergelt D; Fonti MV; Saurer M; Stritih A; Fonti P; Wermelinger B; von Arx G; Lehmann MM
    Tree Physiol; 2020 Dec; 40(12):1697-1711. PubMed ID: 32722795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waves of larch budmoth outbreaks in the European alps.
    Bjørnstad ON; Peltonen M; Liebhold AM; Baltensweiler W
    Science; 2002 Nov; 298(5595):1020-3. PubMed ID: 12411704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of climate change on larch budmoth cyclic outbreaks.
    Iyengar SV; Balakrishnan J; Kurths J
    Sci Rep; 2016 Jun; 6():27845. PubMed ID: 27293118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tree-ring proxies of larch bud moth defoliation: latewood width and blue intensity are more precise than tree-ring width.
    Arbellay E; Jarvis I; Chavardès RD; Daniels LD; Stoffel M
    Tree Physiol; 2018 Aug; 38(8):1237-1245. PubMed ID: 29788327
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antennal responses of the two host races of the larch bud moth, Zeiraphera diniana, to larch and cembran pine volatiles.
    Syed Z; Guerin PM; Baltensweiler W
    J Chem Ecol; 2003 Jul; 29(7):1691-708. PubMed ID: 12921446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of discrete-time larch budmoth population models.
    Jang SR; Johnson DM
    J Biol Dyn; 2009 Mar; 3(2-3):209-23. PubMed ID: 22880830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Forest defoliator outbreaks under climate change: effects on the frequency and severity of outbreaks of five pine insect pests.
    Haynes KJ; Allstadt AJ; Klimetzek D
    Glob Chang Biol; 2014 Jun; 20(6):2004-18. PubMed ID: 24464875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pine processionary moth outbreaks cause longer growth legacies than drought and are linked to the North Atlantic Oscillation.
    Camarero JJ; Tardif J; Gazol A; Conciatori F
    Sci Total Environ; 2022 May; 819():153041. PubMed ID: 35038538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-Term Impacts of Defoliator Outbreaks on Larch Xylem Structure and Tree-Ring Biomass.
    Castagneri D; Prendin AL; Peters RL; Carrer M; von Arx G; Fonti P
    Front Plant Sci; 2020; 11():1078. PubMed ID: 32765561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-existence of periodic bursts and death of cycles in a population dynamics system.
    Iyengar SV; Balakrishnan J; Kurths J
    Chaos; 2016 Sep; 26(9):093111. PubMed ID: 27781437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Climate change and outbreaks of the geometrids Operophtera brumata and Epirrita autumnata in subarctic birch forest: evidence of a recent outbreak range expansion.
    Jepsen JU; Hagen SB; Ims RA; Yoccoz NG
    J Anim Ecol; 2008 Mar; 77(2):257-64. PubMed ID: 18070041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Why the larch bud-moth cycle collapsed in the subalpine larch-cembran pine forests in the year 1990 for the first time since 1850.
    Baltensweiler W
    Oecologia; 1993 May; 94(1):62-66. PubMed ID: 28313859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Host choice promotes reproductive isolation between host races of the larch budmoth Zeiraphera diniana.
    Emelianov I; Simpson F; Narang P; Mallet J
    J Evol Biol; 2003 Mar; 16(2):208-18. PubMed ID: 14635859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determinants and consequences of plant-insect phenological synchrony for a non-native herbivore on a deciduous conifer: implications for invasion success.
    Ward SF; Moon RD; Herms DA; Aukema BH
    Oecologia; 2019 Aug; 190(4):867-878. PubMed ID: 31317270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.