BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

526 related articles for article (PubMed ID: 31920048)

  • 21. Insights into Metabolic Activity and Structure of the Retina through Multiphoton Fluorescence Lifetime Imaging Microscopy in Mice.
    Kesavamoorthy N; Junge JA; Fraser SE; Ameri H
    Cells; 2022 Jul; 11(15):. PubMed ID: 35892562
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of endogenous fluorescence in nonsmall lung cancerous cells: A comparison with nonmalignant lung normal cells.
    Awasthi K; Chang FL; Hsieh PY; Hsu HY; Ohta N
    J Biophotonics; 2020 May; 13(5):e201960210. PubMed ID: 32067342
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic imaging with the use of fluorescence lifetime imaging microscopy (FLIM) accurately detects mitochondrial dysfunction in mouse oocytes.
    Sanchez T; Wang T; Pedro MV; Zhang M; Esencan E; Sakkas D; Needleman D; Seli E
    Fertil Steril; 2018 Dec; 110(7):1387-1397. PubMed ID: 30446247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-Photon Autofluorescence Imaging of Fixed Tissues: Feasibility and Potential Values for Biomedical Applications.
    Li LZ; Masek M; Wang T; Xu HN; Nioka S; Baur JA; Ragan TM
    Adv Exp Med Biol; 2020; 1232():375-381. PubMed ID: 31893434
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Local redox conditions in cells imaged via non-fluorescent transient states of NAD(P)H.
    Tornmalm J; Sandberg E; Rabasovic M; Widengren J
    Sci Rep; 2019 Oct; 9(1):15070. PubMed ID: 31636326
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In Vivo Autofluorescence Imaging of Tumor Heterogeneity in Response to Treatment.
    Shah AT; Diggins KE; Walsh AJ; Irish JM; Skala MC
    Neoplasia; 2015 Dec; 17(12):862-870. PubMed ID: 26696368
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vivo multiphoton fluorescence lifetime imaging of protein-bound and free nicotinamide adenine dinucleotide in normal and precancerous epithelia.
    Skala MC; Riching KM; Bird DK; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; Keely PJ; Ramanujam N
    J Biomed Opt; 2007; 12(2):024014. PubMed ID: 17477729
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular pH affects the fluorescence lifetimes of metabolic co-factors.
    Schmitz R; Tweed K; Walsh C; Walsh AJ; Skala MC
    J Biomed Opt; 2021 May; 26(5):. PubMed ID: 34032035
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic cofactors NAD(P)H and FAD as potential indicators of cancer cell response to chemotherapy with paclitaxel.
    Lukina MM; Dudenkova VV; Ignatova NI; Druzhkova IN; Shimolina LE; Zagaynova EV; Shirmanova MV
    Biochim Biophys Acta Gen Subj; 2018 Aug; 1862(8):1693-1700. PubMed ID: 29719197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Label-free characterization of single extracellular vesicles using two-photon fluorescence lifetime imaging microscopy of NAD(P)H.
    Sorrells JE; Martin EM; Aksamitiene E; Mukherjee P; Alex A; Chaney EJ; Marjanovic M; Boppart SA
    Sci Rep; 2021 Feb; 11(1):3308. PubMed ID: 33558561
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quenched coumarin derivatives as fluorescence lifetime phantoms for NADH and FAD.
    Freymüller C; Kalinina S; Rück A; Sroka R; Rühm A
    J Biophotonics; 2021 Jul; 14(7):e202100024. PubMed ID: 33749988
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast.
    Conklin MW; Provenzano PP; Eliceiri KW; Sullivan R; Keely PJ
    Cell Biochem Biophys; 2009; 53(3):145-57. PubMed ID: 19259625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Single cell-based fluorescence lifetime imaging of intracellular oxygenation and metabolism.
    Penjweini R; Roarke B; Alspaugh G; Gevorgyan A; Andreoni A; Pasut A; Sackett DL; Knutson JR
    Redox Biol; 2020 Jul; 34():101549. PubMed ID: 32403080
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein.
    Huang S; Heikal AA; Webb WW
    Biophys J; 2002 May; 82(5):2811-25. PubMed ID: 11964266
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contribution of autofluorescence from intracellular proteins in multiphoton fluorescence lifetime imaging.
    Malak M; James J; Grantham J; Ericson MB
    Sci Rep; 2022 Oct; 12(1):16584. PubMed ID: 36198710
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia.
    Skala MC; Riching KM; Gendron-Fitzpatrick A; Eickhoff J; Eliceiri KW; White JG; Ramanujam N
    Proc Natl Acad Sci U S A; 2007 Dec; 104(49):19494-9. PubMed ID: 18042710
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiphoton redox ratio imaging for metabolic monitoring in vivo.
    Skala M; Ramanujam N
    Methods Mol Biol; 2010; 594():155-62. PubMed ID: 20072916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantification of the Metabolic State in Cell-Model of Parkinson's Disease by Fluorescence Lifetime Imaging Microscopy.
    Chakraborty S; Nian FS; Tsai JW; Karmenyan A; Chiou A
    Sci Rep; 2016 Jan; 6():19145. PubMed ID: 26758390
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NAD(P)H fluorescence lifetime measurements in fixed biological tissues.
    Chacko JV; Eliceiri KW
    Methods Appl Fluoresc; 2019 Oct; 7(4):044005. PubMed ID: 31553966
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing metabolic states of differentiating stem cells using two-photon FLIM.
    Meleshina AV; Dudenkova VV; Shirmanova MV; Shcheslavskiy VI; Becker W; Bystrova AS; Cherkasova EI; Zagaynova EV
    Sci Rep; 2016 Feb; 6():21853. PubMed ID: 26911347
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.