BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31920075)

  • 1. Low-Temperature Electroluminescence Excitation Mapping of Excitons and Trions in Short-Channel Monochiral Carbon Nanotube Devices.
    Gaulke M; Janissek A; Peyyety NA; Alamgir I; Riaz A; Dehm S; Li H; Lemmer U; Flavel BS; Kappes MM; Hennrich F; Wei L; Chen Y; Pyatkov F; Krupke R
    ACS Nano; 2020 Mar; 14(3):2709-2717. PubMed ID: 31920075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroluminescence from Single-Walled Carbon Nanotubes with Quantum Defects.
    Li MK; Riaz A; Wederhake M; Fink K; Saha A; Dehm S; He X; Schöppler F; Kappes MM; Htoon H; Popov VN; Doorn SK; Hertel T; Hennrich F; Krupke R
    ACS Nano; 2022 Aug; 16(8):11742-11754. PubMed ID: 35732039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electroluminescence from chirality-sorted (9,7)-semiconducting carbon nanotube devices.
    Pfeiffer MH; Stürzl N; Marquardt CW; Engel M; Dehm S; Hennrich F; Kappes MM; Lemmer U; Krupke R
    Opt Express; 2011 Nov; 19 Suppl 6():A1184-9. PubMed ID: 22109613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trion electroluminescence from semiconducting carbon nanotubes.
    Jakubka F; Grimm SB; Zakharko Y; Gannott F; Zaumseil J
    ACS Nano; 2014 Aug; 8(8):8477-86. PubMed ID: 25029479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping charge transport by electroluminescence in chirality-selected carbon nanotube networks.
    Jakubka F; Backes C; Gannott F; Mundloch U; Hauke F; Hirsch A; Zaumseil J
    ACS Nano; 2013 Aug; 7(8):7428-35. PubMed ID: 23915032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exciton formation and annihilation during 1D impact excitation of carbon nanotubes.
    Marty L; Adam E; Albert L; Doyon R; Ménard D; Martel R
    Phys Rev Lett; 2006 Apr; 96(13):136803. PubMed ID: 16712017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Infrared Organic Light-Emitting Diodes with Carbon Nanotube Emitters.
    Graf A; Murawski C; Zakharko Y; Zaumseil J; Gather MC
    Adv Mater; 2018 Mar; 30(12):e1706711. PubMed ID: 29380897
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrically excited, localized infrared emission from single carbon nanotubes.
    Freitag M; Tsang JC; Kirtley J; Carlsen A; Chen J; Troeman A; Hilgenkamp H; Avouris P
    Nano Lett; 2006 Jul; 6(7):1425-33. PubMed ID: 16834423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Dielectric Environment on Trion Emission from Single-Walled Carbon Nanotube Networks.
    Wieland S; El Yumin AA; Gotthardt JM; Zaumseil J
    J Phys Chem C Nanomater Interfaces; 2023 Feb; 127(6):3112-3122. PubMed ID: 36824583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors.
    Paur M; Molina-Mendoza AJ; Bratschitsch R; Watanabe K; Taniguchi T; Mueller T
    Nat Commun; 2019 Apr; 10(1):1709. PubMed ID: 30979893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroluminescence from electrolyte-gated carbon nanotube field-effect transistors.
    Zaumseil J; Ho X; Guest JR; Wiederrecht GP; Rogers JA
    ACS Nano; 2009 Aug; 3(8):2225-34. PubMed ID: 19634895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficiency Roll-Off Free Electroluminescence from Monolayer WSe
    Uddin SZ; Higashitarumizu N; Kim H; Rahman IKMR; Javey A
    Nano Lett; 2022 Jul; 22(13):5316-5321. PubMed ID: 35729730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes.
    Park J; Reid OG; Blackburn JL; Rumbles G
    Nat Commun; 2015 Nov; 6():8809. PubMed ID: 26531728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-wavelength electroluminescence from single-walled carbon nanotubes with high bias voltage.
    Hibino N; Suzuki S; Wakahara H; Kobayashi Y; Sato T; Maki H
    ACS Nano; 2011 Feb; 5(2):1215-22. PubMed ID: 21204568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon Correlation Spectroscopy of Luminescent Quantum Defects in Carbon Nanotubes.
    Nutz M; Zhang J; Kim M; Kwon H; Wu X; Wang Y; Högele A
    Nano Lett; 2019 Oct; 19(10):7078-7084. PubMed ID: 31478677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonlinear photoluminescence excitation spectroscopy of carbon nanotubes: exploring the upper density limit of one-dimensional excitons.
    Murakami Y; Kono J
    Phys Rev Lett; 2009 Jan; 102(3):037401. PubMed ID: 19257392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors.
    Sharma A; Yan H; Zhang L; Sun X; Liu B; Lu Y
    Acc Chem Res; 2018 May; 51(5):1164-1173. PubMed ID: 29671579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solid state carbon nanotube device for controllable trion electroluminescence emission.
    Liang S; Ma Z; Wei N; Liu H; Wang S; Peng LM
    Nanoscale; 2016 Mar; 8(12):6761-9. PubMed ID: 26953676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multispectral electroluminescence enhancement of single-walled carbon nanotubes coupled to periodic nanodisk arrays.
    Zakharko Y; Held M; Graf A; Rödlmeier T; Eckstein R; Hernandez-Sosa G; Hähnlein B; Pezoldt J; Zaumseil J
    Opt Express; 2017 Jul; 25(15):18092-18106. PubMed ID: 28789299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.