These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31920574)

  • 1. Tactile Cross-Modal Acceleration Effects on Auditory Steady-State Response.
    Sugiyama S; Kinukawa T; Takeuchi N; Nishihara M; Shioiri T; Inui K
    Front Integr Neurosci; 2019; 13():72. PubMed ID: 31920574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of acceleration of auditory inputs on the primary somatosensory cortex in humans.
    Sugiyama S; Takeuchi N; Inui K; Nishihara M; Shioiri T
    Sci Rep; 2018 Aug; 8(1):12883. PubMed ID: 30150686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Change-Related Acceleration Effects on Auditory Steady State Response.
    Sugiyama S; Kinukawa T; Takeuchi N; Nishihara M; Shioiri T; Inui K
    Front Syst Neurosci; 2019; 13():53. PubMed ID: 31680884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Translating Adult Electrophysiology Findings to Younger Patient Populations: Difficulty Measuring 40-Hz Auditory Steady-State Responses in Typically Developing Children and Children with Autism Spectrum Disorder.
    Edgar JC; Fisk CL; Liu S; Pandey J; Herrington JD; Schultz RT; Roberts TP
    Dev Neurosci; 2016; 38(1):1-14. PubMed ID: 26730806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Brain stem and cortical mechanisms underlying the binaural masking level difference in humans: an auditory steady-state response study.
    Wong WY; Stapells DR
    Ear Hear; 2004 Feb; 25(1):57-67. PubMed ID: 14770018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sub-threshold cross-modal sensory interaction in the thalamus: lemniscal auditory response in the medial geniculate nucleus is modulated by somatosensory stimulation.
    Donishi T; Kimura A; Imbe H; Yokoi I; Kaneoke Y
    Neuroscience; 2011 Feb; 174():200-15. PubMed ID: 21111788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel type of auditory responses: temporal dynamics of 40-Hz steady-state responses induced by changes in sound localization.
    Ross B
    J Neurophysiol; 2008 Sep; 100(3):1265-77. PubMed ID: 18632891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot study: Auditory steady-state responses (ASSR) can be measured in human fetuses using fetal magnetoencephalography (fMEG).
    Niepel D; Krishna B; Siegel ER; Draganova R; Preissl H; Govindan RB; Eswaran H
    PLoS One; 2020; 15(7):e0235310. PubMed ID: 32697776
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Latencies of auditory steady-state responses recorded in early infancy.
    Alaerts J; Luts H; Van Dun B; Desloovere C; Wouters J
    Audiol Neurootol; 2010; 15(2):116-27. PubMed ID: 19657187
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air-conduction auditory steady-state response: comparison of interchannel recording using two modulation frequencies.
    Kaf WA; Danesh AA
    J Am Acad Audiol; 2008 Oct; 19(9):696-707. PubMed ID: 19418709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Sound-Pressure Change on the 40 Hz Auditory Steady-State Response and Change-Related Cerebral Response.
    Motomura E; Inui K; Kawano Y; Nishihara M; Okada M
    Brain Sci; 2019 Aug; 9(8):. PubMed ID: 31426410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steady-state MEG responses elicited by a sequence of amplitude-modulated short tones of different carrier frequencies.
    Kuriki S; Kobayashi Y; Kobayashi T; Tanaka K; Uchikawa Y
    Hear Res; 2013 Feb; 296():25-35. PubMed ID: 23174483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Normal ipsilateral/contralateral asymmetries in infant multiple auditory steady-state responses to air- and bone-conduction stimuli.
    Small SA; Stapells DR
    Ear Hear; 2008 Apr; 29(2):185-98. PubMed ID: 18595185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amplitude modulation rate dependent topographic organization of the auditory steady-state response in human auditory cortex.
    Weisz N; Lithari C
    Hear Res; 2017 Oct; 354():102-108. PubMed ID: 28917446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-specific disruptions of neuronal oscillations reveal aberrant auditory processing in schizophrenia.
    Hayrynen LK; Hamm JP; Sponheim SR; Clementz BA
    Psychophysiology; 2016 Jun; 53(6):786-95. PubMed ID: 26933842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of contralateral noise on 40-Hz and 80-Hz auditory steady-state responses.
    Maki A; Kawase T; Kobayashi T
    Ear Hear; 2009 Oct; 30(5):584-9. PubMed ID: 19550336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 40-Hz auditory steady-state responses and the complex information processing: An exploratory study in healthy young males.
    Parciauskaite V; Voicikas A; Jurkuvenas V; Tarailis P; Kraulaidis M; Pipinis E; Griskova-Bulanova I
    PLoS One; 2019; 14(10):e0223127. PubMed ID: 31589626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auditory peripersonal space in humans.
    Farnè A; Làdavas E
    J Cogn Neurosci; 2002 Oct; 14(7):1030-43. PubMed ID: 12419126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial auditory attention is modulated by tactile priming.
    Menning H; Ackermann H; Hertrich I; Mathiak K
    Exp Brain Res; 2005 Jul; 164(1):41-7. PubMed ID: 15726341
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of auditory stimulation rates on evoked potentials during general anesthesia: relation between the transient auditory middle-latency response and the 40-Hz auditory steady state response.
    McNeer RR; Bohórquez J; Ozdamar O
    Anesthesiology; 2009 May; 110(5):1026-35. PubMed ID: 19352165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.