These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 31920630)
1. Regional Distributions of Iron, Copper and Zinc and Their Relationships With Glia in a Normal Aging Mouse Model. Ashraf A; Michaelides C; Walker TA; Ekonomou A; Suessmilch M; Sriskanthanathan A; Abraha S; Parkes A; Parkes HG; Geraki K; So PW Front Aging Neurosci; 2019; 11():351. PubMed ID: 31920630 [TBL] [Abstract][Full Text] [Related]
2. Alterations in the levels of iron, ferritin and other trace metals in Parkinson's disease and other neurodegenerative diseases affecting the basal ganglia. Dexter DT; Carayon A; Javoy-Agid F; Agid Y; Wells FR; Daniel SE; Lees AJ; Jenner P; Marsden CD Brain; 1991 Aug; 114 ( Pt 4)():1953-75. PubMed ID: 1832073 [TBL] [Abstract][Full Text] [Related]
3. Brain iron homeostasis. Moos T Dan Med Bull; 2002 Nov; 49(4):279-301. PubMed ID: 12553165 [TBL] [Abstract][Full Text] [Related]
4. Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. Erikson KM; Syversen T; Steinnes E; Aschner M J Nutr Biochem; 2004 Jun; 15(6):335-41. PubMed ID: 15157939 [TBL] [Abstract][Full Text] [Related]
5. Astrocyte mitochondria: a substrate for iron deposition in the aging rat substantia nigra. Schipper HM; Vininsky R; Brull R; Small L; Brawer JR Exp Neurol; 1998 Aug; 152(2):188-96. PubMed ID: 9710517 [TBL] [Abstract][Full Text] [Related]
6. The role of iron and copper molecules in the neuronal vulnerability of locus coeruleus and substantia nigra during aging. Zecca L; Stroppolo A; Gatti A; Tampellini D; Toscani M; Gallorini M; Giaveri G; Arosio P; Santambrogio P; Fariello RG; Karatekin E; Kleinman MH; Turro N; Hornykiewicz O; Zucca FA Proc Natl Acad Sci U S A; 2004 Jun; 101(26):9843-8. PubMed ID: 15210960 [TBL] [Abstract][Full Text] [Related]
7. Empirically derived formulae for calculation of age- and region-related levels of iron, copper and zinc in the adult C57BL/6 mouse brain. Suryana E; Rowlands BD; Bishop DP; Finkelstein DI; Double KL Neurobiol Aging; 2024 Apr; 136():34-43. PubMed ID: 38301453 [TBL] [Abstract][Full Text] [Related]
8. Aging results in iron accumulations in the non-human primate choroid of the eye without an associated increase in zinc, copper or sulphur. Ugarte M; Geraki K; Jeffery G Biometals; 2018 Dec; 31(6):1061-1073. PubMed ID: 30306383 [TBL] [Abstract][Full Text] [Related]
9. Understanding metal homeostasis in primary cultured neurons. Studies using single neuron subcellular and quantitative metallomics. Colvin RA; Lai B; Holmes WR; Lee D Metallomics; 2015 Jul; 7(7):1111-23. PubMed ID: 25894020 [TBL] [Abstract][Full Text] [Related]
10. [Effect of lead exposure on the accumulation of copper and iron in central nervous system of rats]. Chen WW; Yan LC; Cao MY; Li XY; Pang SL; Wang Y; Zhang YS Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2019 Mar; 37(3):179-185. PubMed ID: 31189237 [No Abstract] [Full Text] [Related]
11. Brain MR imaging in patients with hepatic cirrhosis: relationship between high intensity signal in basal ganglia on T1-weighted images and elemental concentrations in brain. Maeda H; Sato M; Yoshikawa A; Kimura M; Sonomura T; Terada M; Kishi K Neuroradiology; 1997 Aug; 39(8):546-50. PubMed ID: 9272489 [TBL] [Abstract][Full Text] [Related]
12. Distribution of divalent metal transporter-1 in the monkey basal ganglia. Huang E; Ong WY; Connor JR Neuroscience; 2004; 128(3):487-96. PubMed ID: 15381278 [TBL] [Abstract][Full Text] [Related]
13. Defects in specific associations between astroglia and neurons occur in microcultures of weaver mouse cerebellar cells. Hatten ME; Liem RK; Mason CA J Neurosci; 1984 Apr; 4(4):1163-72. PubMed ID: 6716130 [TBL] [Abstract][Full Text] [Related]
14. Inflammation subsequent to mild iron excess differentially alters regional brain iron metabolism, oxidation and neuroinflammation status in mice. Ashraf AA; Aljuhani M; Hubens CJ; Jeandriens J; Parkes HG; Geraki K; Mahmood A; Herlihy AH; So PW Front Aging Neurosci; 2024; 16():1393351. PubMed ID: 38836051 [TBL] [Abstract][Full Text] [Related]
15. X-ray fluorescence microscopic measurement of elemental distribution in the mouse retina with age. Grubman A; Guennel P; Vessey KA; Jones MW; James SA; de Jonge MD; White AR; Fletcher EL Metallomics; 2016 Oct; 8(10):1110-1121. PubMed ID: 27481440 [TBL] [Abstract][Full Text] [Related]
16. Glia and epilepsy: experimental investigation of antiepileptic drugs in an astroglia/microglia co-culture model of inflammation. Dambach H; Hinkerohe D; Prochnow N; Stienen MN; Moinfar Z; Haase CG; Hufnagel A; Faustmann PM Epilepsia; 2014 Jan; 55(1):184-92. PubMed ID: 24299259 [TBL] [Abstract][Full Text] [Related]
17. Iron, Copper, and Zinc Concentration in Aβ Plaques in the APP/PS1 Mouse Model of Alzheimer's Disease Correlates with Metal Levels in the Surrounding Neuropil. James SA; Churches QI; de Jonge MD; Birchall IE; Streltsov V; McColl G; Adlard PA; Hare DJ ACS Chem Neurosci; 2017 Mar; 8(3):629-637. PubMed ID: 27958708 [TBL] [Abstract][Full Text] [Related]
18. Copper and zinc distribution in the human retina: relationship to cadmium accumulation, age, and gender. Wills NK; Ramanujam VM; Kalariya N; Lewis JR; van Kuijk FJ Exp Eye Res; 2008 Aug; 87(2):80-8. PubMed ID: 18579132 [TBL] [Abstract][Full Text] [Related]
19. Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. Connor JR; Menzies SL; St Martin SM; Mufson EJ J Neurosci Res; 1990 Dec; 27(4):595-611. PubMed ID: 2079720 [TBL] [Abstract][Full Text] [Related]
20. Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. The Royal Kings and Queens Parkinson's Disease Research Group. Dexter DT; Jenner P; Schapira AH; Marsden CD Ann Neurol; 1992; 32 Suppl():S94-100. PubMed ID: 1510387 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]