These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 31920706)
1. Identifying SNAREs by Incorporating Deep Learning Architecture and Amino Acid Embedding Representation. Le NQK; Huynh TT Front Physiol; 2019; 10():1501. PubMed ID: 31920706 [TBL] [Abstract][Full Text] [Related]
2. A deep learning framework for enhancer prediction using word embedding and sequence generation. Geng Q; Yang R; Zhang L Biophys Chem; 2022 Jul; 286():106822. PubMed ID: 35605495 [TBL] [Abstract][Full Text] [Related]
3. SNARE-CNN: a 2D convolutional neural network architecture to identify SNARE proteins from high-throughput sequencing data. Le NQK; Nguyen VN PeerJ Comput Sci; 2019; 5():e177. PubMed ID: 33816830 [TBL] [Abstract][Full Text] [Related]
4. A transformer architecture based on BERT and 2D convolutional neural network to identify DNA enhancers from sequence information. Le NQK; Ho QT; Nguyen TT; Ou YY Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33539511 [TBL] [Abstract][Full Text] [Related]
5. Persian sentiment analysis of an online store independent of pre-processing using convolutional neural network with fastText embeddings. Shumaly S; Yazdinejad M; Guo Y PeerJ Comput Sci; 2021; 7():e422. PubMed ID: 33817057 [TBL] [Abstract][Full Text] [Related]
6. iEnhancer-GAN: A Deep Learning Framework in Combination with Word Embedding and Sequence Generative Adversarial Net to Identify Enhancers and Their Strength. Yang R; Wu F; Zhang C; Zhang L Int J Mol Sci; 2021 Mar; 22(7):. PubMed ID: 33808317 [TBL] [Abstract][Full Text] [Related]
7. SNAREs-SAP: SNARE Proteins Identification With PSSM Profiles. Zhang Z; Gong Y; Gao B; Li H; Gao W; Zhao Y; Dong B Front Genet; 2021; 12():809001. PubMed ID: 34987554 [TBL] [Abstract][Full Text] [Related]
8. Fast and scalable neural embedding models for biomedical sentence classification. Agibetov A; Blagec K; Xu H; Samwald M BMC Bioinformatics; 2018 Dec; 19(1):541. PubMed ID: 30577747 [TBL] [Abstract][Full Text] [Related]
9. An efficient consolidation of word embedding and deep learning techniques for classifying anticancer peptides: FastText+BiLSTM. Karakaya O; Kilimci ZH PeerJ Comput Sci; 2024; 10():e1831. PubMed ID: 38435607 [TBL] [Abstract][Full Text] [Related]
11. Using word embedding technique to efficiently represent protein sequences for identifying substrate specificities of transporters. Nguyen TT; Le NQ; Ho QT; Phan DV; Ou YY Anal Biochem; 2019 Jul; 577():73-81. PubMed ID: 31022378 [TBL] [Abstract][Full Text] [Related]
12. Identifying SNARE Proteins Using an Alignment-Free Method Based on Multiscan Convolutional Neural Network and PSSM Profiles. Kha QH; Ho QT; Le NQK J Chem Inf Model; 2022 Oct; 62(19):4820-4826. PubMed ID: 36166351 [No Abstract] [Full Text] [Related]
13. Incorporating deep learning with convolutional neural networks and position specific scoring matrices for identifying electron transport proteins. Le NQ; Ho QT; Ou YY J Comput Chem; 2017 Sep; 38(23):2000-2006. PubMed ID: 28643394 [TBL] [Abstract][Full Text] [Related]
14. cACP-DeepGram: Classification of anticancer peptides via deep neural network and skip-gram-based word embedding model. Akbar S; Hayat M; Tahir M; Khan S; Alarfaj FK Artif Intell Med; 2022 Sep; 131():102349. PubMed ID: 36100346 [TBL] [Abstract][Full Text] [Related]
15. Sequence representation approaches for sequence-based protein prediction tasks that use deep learning. Cui F; Zhang Z; Zou Q Brief Funct Genomics; 2021 Mar; 20(1):61-73. PubMed ID: 33527980 [TBL] [Abstract][Full Text] [Related]
16. EMDLP: Ensemble multiscale deep learning model for RNA methylation site prediction. Wang H; Liu H; Huang T; Li G; Zhang L; Sun Y BMC Bioinformatics; 2022 Jun; 23(1):221. PubMed ID: 35676633 [TBL] [Abstract][Full Text] [Related]
17. Identification of the ubiquitin-proteasome pathway domain by hyperparameter optimization based on a 2D convolutional neural network. Sikander R; Arif M; Ghulam A; Worachartcheewan A; Thafar MA; Habib S Front Genet; 2022; 13():851688. PubMed ID: 35937990 [TBL] [Abstract][Full Text] [Related]
18. Improved Skip-Gram Based on Graph Structure Information. Wang X; Zhao H; Chen H Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514822 [TBL] [Abstract][Full Text] [Related]
19. TRP-BERT: Discrimination of transient receptor potential (TRP) channels using contextual representations from deep bidirectional transformer based on BERT. Ali Shah SM; Ou YY Comput Biol Med; 2021 Oct; 137():104821. PubMed ID: 34508974 [TBL] [Abstract][Full Text] [Related]