These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31921021)

  • 1. Actinobacteria as Promising Candidate for Polylactic Acid Type Bioplastic Degradation.
    Butbunchu N; Pathom-Aree W
    Front Microbiol; 2019; 10():2834. PubMed ID: 31921021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of a plastic-degrading enzyme from Cryptococcus nemorosus and its use in self-degradable plastics.
    Arunrattanamook N; Mhuantong W; Paemanee A; Reamtong O; Hararak B; Champreda V
    Appl Microbiol Biotechnol; 2023 Dec; 107(24):7439-7450. PubMed ID: 37801098
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of degradation behavior and conditions for the protease K of polylactic acid films by simulation.
    Pang W; Li B; Wu Y; Tian S; Zhang Y; Yang J
    Int J Biol Macromol; 2023 Dec; 253(Pt 7):127496. PubMed ID: 37858641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogenetic Distribution of Plastic-Degrading Microorganisms.
    Gambarini V; Pantos O; Kingsbury JM; Weaver L; Handley KM; Lear G
    mSystems; 2021 Jan; 6(1):. PubMed ID: 33468707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microplastics from petroleum-based plastics and their effects: A systematic literature review and science mapping of global bioplastics production.
    Mutmainna I; Gareso PL; Suryani S; Tahir D
    Integr Environ Assess Manag; 2024 Jul; ():. PubMed ID: 38980276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic degradation of polylactic acid (PLA).
    Shalem A; Yehezkeli O; Fishman A
    Appl Microbiol Biotechnol; 2024 Jul; 108(1):413. PubMed ID: 38985324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feasibility of bioplastic production using micro- and macroalgae- A review.
    Sudhakar MP; Maurya R; Mehariya S; Karthikeyan OP; Dharani G; Arunkumar K; Pereda SV; Hernández-González MC; Buschmann AH; Pugazhendhi A
    Environ Res; 2024 Jan; 240(Pt 2):117465. PubMed ID: 37879387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Directed Evolution of Material Binding Peptide for Polylactic Acid-specific Degradation in Mixed Plastic Wastes.
    Lu Y; Hintzen KW; Kurkina T; Ji Y; Schwaneberg U
    ACS Catal; 2023 Oct; 13(19):12746-12754. PubMed ID: 37822861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immobilization of Protease K with ZIF-8 for Enhanced Stability in Polylactic Acid Melt Processing and Catalytic Degradation.
    Weng Y; Dunn CB; Qiang Z; Ren J
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37971900
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Bonifer KS; Wen X; Hasim S; Phillips EK; Dunlap RN; Gann ER; DeBruyn JM; Reynolds TB
    Front Microbiol; 2019; 10():2548. PubMed ID: 31824441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UV Light Degradation of Polylactic Acid Kickstarts Enzymatic Hydrolysis.
    Brown MH; Badzinski TD; Pardoe E; Ehlebracht M; Maurer-Jones MA
    ACS Mater Au; 2024 Jan; 4(1):92-98. PubMed ID: 38221918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Highly Sustainable Supramolecular Bioplastic Film with Superior Hydroplasticity and Biodegradability.
    Jin H; Wu Z; Lin W; Cai Y; He L; Cao C; Wang X; Qian Q; Chen Q; Yan Y
    ChemSusChem; 2024 Jun; ():e202400512. PubMed ID: 38878218
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Actinobacteria: An eco-friendly and promising technology for the bioaugmentation of contaminants.
    Mawang CI; Azman AS; Fuad AM; Ahamad M
    Biotechnol Rep (Amst); 2021 Dec; 32():e00679. PubMed ID: 34660214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications.
    Casalini T; Rossi F; Castrovinci A; Perale G
    Front Bioeng Biotechnol; 2019; 7():259. PubMed ID: 31681741
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Erratum:
    Leadbeater DR; Bruce NC; Tonon T
    Microb Genom; 2024 Feb; 10(2):. PubMed ID: 38421378
    [No Abstract]   [Full Text] [Related]  

  • 16. Novel methods to monitor the biodegradation of polylactic acid (PLA) by
    Yasin NM; Pancho F; Yasin M; Van Impe JFM; Akkermans S
    Front Bioeng Biotechnol; 2024; 12():1355050. PubMed ID: 38655392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metagenomic investigations into the microbial consortia, degradation pathways, and enzyme systems involved in the biodegradation of plastics in a tropical lentic pond sediment.
    Salam LB
    World J Microbiol Biotechnol; 2024 Apr; 40(6):172. PubMed ID: 38630153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating the Biodegradation of Poly(lactic acid) through the Inclusion of Plant Fibers: A Review of Recent Advances.
    Momeni S; Craplewe K; Safder M; Luz S; Sauvageau D; Elias A
    ACS Sustain Chem Eng; 2023 Oct; 11(42):15146-15170. PubMed ID: 37886036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbiological Characterization of the Biofilms Colonizing Bioplastics in Natural Marine Conditions: A Comparison between PHBV and PLA.
    Marín A; Feijoo P; de Llanos R; Carbonetto B; González-Torres P; Tena-Medialdea J; García-March JR; Gámez-Pérez J; Cabedo L
    Microorganisms; 2023 May; 11(6):. PubMed ID: 37374962
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.