These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31921049)

  • 1. Consortium of Probiotics Attenuates Colonization of
    Li X; Chu Q; Huang Y; Xiao Y; Song L; Zhu S; Kang Y; Lu S; Xu J; Ren Z
    Front Microbiol; 2019; 10():2871. PubMed ID: 31921049
    [No Abstract]   [Full Text] [Related]  

  • 2. A strain of Bacteroides thetaiotaomicron attenuates colonization of Clostridioides difficile and affects intestinal microbiota and bile acids profile in a mouse model.
    Li X; Kang Y; Huang Y; Xiao Y; Song L; Lu S; Ren Z
    Biomed Pharmacother; 2021 May; 137():111290. PubMed ID: 33508620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in microbiota composition, bile and fatty acid metabolism, in successful faecal microbiota transplantation for Clostridioides difficile infection.
    Brown JR; Flemer B; Joyce SA; Zulquernain A; Sheehan D; Shanahan F; O'Toole PW
    BMC Gastroenterol; 2018 Aug; 18(1):131. PubMed ID: 30153805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the therapeutic effect and dose-effect of Bifidobacterium breve on the primary Clostridioides difficile infected mice.
    Yang J; Yang H
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9243-9260. PubMed ID: 34751791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Effects of Bifidobacterium breve YH68 in Combination with Vancomycin and Metronidazole in a Primary Clostridioides difficile-Infected Mouse Model.
    Yang J; Meng L; Yang H
    Microbiol Spectr; 2022 Apr; 10(2):e0067222. PubMed ID: 35311540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Restoration of short chain fatty acid and bile acid metabolism following fecal microbiota transplantation in patients with recurrent Clostridium difficile infection.
    Seekatz AM; Theriot CM; Rao K; Chang YM; Freeman AE; Kao JY; Young VB
    Anaerobe; 2018 Oct; 53():64-73. PubMed ID: 29654837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bacterial Gut Microbiota of Adult Patients Infected, Colonized or Noncolonized by
    Crobach MJT; Ducarmon QR; Terveer EM; Harmanus C; Sanders IMJG; Verduin KM; Kuijper EJ; Zwittink RD
    Microorganisms; 2020 May; 8(5):. PubMed ID: 32384826
    [No Abstract]   [Full Text] [Related]  

  • 8. Investigation of Intestinal Microbiota and Fecal Calprotectin in Non-Toxigenic and Toxigenic
    Han SH; Yi J; Kim JH; Moon AH
    Microorganisms; 2020 Jun; 8(6):. PubMed ID: 32545219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of bile acid metabolism to the pathogenesis of
    Mullish BH; Allegretti JR
    Therap Adv Gastroenterol; 2021; 14():17562848211017725. PubMed ID: 34104212
    [No Abstract]   [Full Text] [Related]  

  • 10. Gut Microbiota Composition Associated with
    Martinez E; Taminiau B; Rodriguez C; Daube G
    Pathogens; 2022 Jul; 11(7):. PubMed ID: 35890026
    [No Abstract]   [Full Text] [Related]  

  • 11. Gut Microbiota-Gut Metabolites and
    Gurung B; Stricklin M; Wang S
    Metabolites; 2024 Jan; 14(1):. PubMed ID: 38276309
    [No Abstract]   [Full Text] [Related]  

  • 12. Application of Microbiome Management in Therapy for
    Chiu CW; Tsai PJ; Lee CC; Ko WC; Hung YP
    Pathogens; 2021 May; 10(6):. PubMed ID: 34073695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions Between
    Horvat S; Rupnik M
    Front Microbiol; 2018; 9():1633. PubMed ID: 30087660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probiotics for prevention of Clostridium difficile infection.
    Mills JP; Rao K; Young VB
    Curr Opin Gastroenterol; 2018 Jan; 34(1):3-10. PubMed ID: 29189354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fungal and bacterial gut microbiota differ between
    Henderickx JGE; Crobach MJT; Terveer EM; Smits WK; Kuijper EJ; Zwittink RD
    Microbiome Res Rep; 2024; 3(1):8. PubMed ID: 38455084
    [No Abstract]   [Full Text] [Related]  

  • 16. Identification of Clostridioides difficile-Inhibiting Gut Commensals Using Culturomics, Phenotyping, and Combinatorial Community Assembly.
    Ghimire S; Roy C; Wongkuna S; Antony L; Maji A; Keena MC; Foley A; Scaria J
    mSystems; 2020 Feb; 5(1):. PubMed ID: 32019832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid change of fecal microbiome and disappearance of Clostridium difficile in a colonized infant after transition from breast milk to cow milk.
    Davis MY; Zhang H; Brannan LE; Carman RJ; Boone JH
    Microbiome; 2016 Oct; 4(1):53. PubMed ID: 27717398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probiotics and Fecal Microbiota Transplant for Primary and Secondary Prevention of Clostridium difficile Infection.
    Crow JR; Davis SL; Chaykosky DM; Smith TT; Smith JM
    Pharmacotherapy; 2015 Nov; 35(11):1016-25. PubMed ID: 26598094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiotic-Induced Alterations of the Gut Microbiota Alter Secondary Bile Acid Production and Allow for Clostridium difficile Spore Germination and Outgrowth in the Large Intestine.
    Theriot CM; Bowman AA; Young VB
    mSphere; 2016; 1(1):. PubMed ID: 27239562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probiotic Supplementation in a
    Gaisawat MB; MacPherson CW; Tremblay J; Piano A; Iskandar MM; Tompkins TA; Kubow S
    Microorganisms; 2019 Dec; 8(1):. PubMed ID: 31905795
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.