These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

433 related articles for article (PubMed ID: 31921109)

  • 41. Epigenetic memory in reprogramming.
    Hörmanseder E
    Curr Opin Genet Dev; 2021 Oct; 70():24-31. PubMed ID: 34058535
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Direct cell reprogramming: approaches, mechanisms and progress.
    Wang H; Yang Y; Liu J; Qian L
    Nat Rev Mol Cell Biol; 2021 Jun; 22(6):410-424. PubMed ID: 33619373
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Direct cellular reprogramming in Caenorhabditis elegans: facts, models, and promises for regenerative medicine.
    Zuryn S; Daniele T; Jarriault S
    Wiley Interdiscip Rev Dev Biol; 2012; 1(1):138-52. PubMed ID: 23801672
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Identifying Molecular Roadblocks for Transcription Factor-Induced Cellular Reprogramming In Vivo by Using
    Özcan I; Tursun B
    J Dev Biol; 2023 Aug; 11(3):. PubMed ID: 37754839
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanisms regulating dendritic cell specification and development.
    Watowich SS; Liu YJ
    Immunol Rev; 2010 Nov; 238(1):76-92. PubMed ID: 20969586
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications.
    Moraghebi R; Kirkeby A; Chaves P; Rönn RE; Sitnicka E; Parmar M; Larsson M; Herbst A; Woods NB
    Stem Cell Res Ther; 2017 Aug; 8(1):190. PubMed ID: 28841906
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo.
    Radhakrishnan S; Cabrera R; Schenk EL; Nava-Parada P; Bell MP; Van Keulen VP; Marler RJ; Felts SJ; Pease LR
    J Immunol; 2008 Sep; 181(5):3137-47. PubMed ID: 18713984
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transcriptional control of dendritic cell development.
    Murphy KM
    Adv Immunol; 2013; 120():239-67. PubMed ID: 24070387
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Application of Modified mRNA in Somatic Reprogramming to Pluripotency and Directed Conversion of Cell Fate.
    Wang AYL
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360910
    [TBL] [Abstract][Full Text] [Related]  

  • 50. PU.1 level-directed chromatin structure remodeling at the Irf8 gene drives dendritic cell commitment.
    Schönheit J; Kuhl C; Gebhardt ML; Klett FF; Riemke P; Scheller M; Huang G; Naumann R; Leutz A; Stocking C; Priller J; Andrade-Navarro MA; Rosenbauer F
    Cell Rep; 2013 May; 3(5):1617-28. PubMed ID: 23623495
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tissue-Restricted Stem Cells as Starting Cell Source for Efficient Generation of Pluripotent Stem Cells: An Overview.
    Sundaravadivelu PK; Raina K; Thool M; Ray A; Joshi JM; Kaveeshwar V; Sudhagar S; Lenka N; Thummer RP
    Adv Exp Med Biol; 2022; 1376():151-180. PubMed ID: 34611861
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The expanding horizon of MicroRNAs in cellular reprogramming.
    Adlakha YK; Seth P
    Prog Neurobiol; 2017 Jan; 148():21-39. PubMed ID: 27979736
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Some interfaces of dendritic cell biology.
    Steinman RM
    APMIS; 2003; 111(7-8):675-97. PubMed ID: 12974772
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetic reprogramming of cell identity: lessons from development for regenerative medicine.
    Basu A; Tiwari VK
    Clin Epigenetics; 2021 Jul; 13(1):144. PubMed ID: 34301318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pancreatic cell fate specification: insights into developmental mechanisms and their application for lineage reprogramming.
    Isaacson A; Spagnoli FM
    Curr Opin Genet Dev; 2021 Oct; 70():32-39. PubMed ID: 34062490
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reprogramming cell fate: a changing story.
    Chin MT
    Front Cell Dev Biol; 2014; 2():46. PubMed ID: 25364753
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An Overview on Promising Somatic Cell Sources Utilized for the Efficient Generation of Induced Pluripotent Stem Cells.
    Ray A; Joshi JM; Sundaravadivelu PK; Raina K; Lenka N; Kaveeshwar V; Thummer RP
    Stem Cell Rev Rep; 2021 Dec; 17(6):1954-1974. PubMed ID: 34100193
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemically induced cell fate reprogramming and the acquisition of plasticity in somatic cells.
    Zhao Y
    Curr Opin Chem Biol; 2019 Aug; 51():146-153. PubMed ID: 31153758
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The transcription factor code in iPSC reprogramming.
    Deng W; Jacobson EC; Collier AJ; Plath K
    Curr Opin Genet Dev; 2021 Oct; 70():89-96. PubMed ID: 34246082
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Transcription factor-mediated reprogramming toward hematopoietic stem cells.
    Ebina W; Rossi DJ
    EMBO J; 2015 Mar; 34(6):694-709. PubMed ID: 25712209
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.