These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31921235)

  • 21. Xeromorphic traits help to maintain photosynthesis in the perhumid climate of a Taiwanese cloud forest.
    Pariyar S; Chang SC; Zinsmeister D; Zhou H; Grantz DA; Hunsche M; Burkhardt J
    Oecologia; 2017 Jul; 184(3):609-621. PubMed ID: 28616633
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period].
    Schulze ED; Lange OL; Koch W
    Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing Abscisic Acid-Mediated Changes in Stomatal Aperture Through High-Quality Leaf Impressions.
    Díez AR; Duque P; Henriques R
    Methods Mol Biol; 2022; 2494():217-227. PubMed ID: 35467210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An inducible, modular system for spatio-temporal control of gene expression in stomatal guard cells.
    Xiong TC; Hann CM; Chambers JP; Surget M; Ng CK
    J Exp Bot; 2009; 60(14):4129-36. PubMed ID: 19700494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ACCURATE ESTIMATION OF STOMATAL APERTURE FROM SILICONE RUBBER IMPRESSIONS.
    Weyers JDB; Johansen LG
    New Phytol; 1985 Sep; 101(1):109-115. PubMed ID: 33873818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Novel Regulators of Plant Transpiration by Large-Scale Thermal Imaging Screening in Helianthus Annuus.
    Guo K; Mellinger P; Doan V; Allen J; Pringle RN; Jammes F
    J Vis Exp; 2020 Jan; (155):. PubMed ID: 32065151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cytokinin activity increases stomatal density and transpiration rate in tomato.
    Farber M; Attia Z; Weiss D
    J Exp Bot; 2016 Dec; 67(22):6351-6362. PubMed ID: 27811005
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Stomatal aperture dynamics coupling mechanically passive and ionically active mechanisms.
    Cong X; Li S; Hu D
    Plant Cell Environ; 2024 Jan; 47(1):106-121. PubMed ID: 37743707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stomatal regulation by microclimate and tree water relations: interpreting ecophysiological field data with a hydraulic plant model.
    Zweifel R; Steppe K; Sterck FJ
    J Exp Bot; 2007; 58(8):2113-31. PubMed ID: 17490998
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Leaf surface development and the plant fossil record: stomatal patterning in Bennettitales.
    Rudall PJ; Bateman RM
    Biol Rev Camb Philos Soc; 2019 Jun; 94(3):1179-1194. PubMed ID: 30714286
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Taxonomic implication of leaf epidermal anatomy of selected taxa of Scrophulariaceae from Pakistan.
    Ullah F; Ayaz A; Saqib S; Parmar G; Bahadur S; Zaman W
    Microsc Res Tech; 2021 Mar; 84(3):521-530. PubMed ID: 32990330
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disruption of stomatal lineage signaling or transcriptional regulators has differential effects on mesophyll development, but maintains coordination of gas exchange.
    Dow GJ; Berry JA; Bergmann DC
    New Phytol; 2017 Oct; 216(1):69-75. PubMed ID: 28833173
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamic thermal imaging confirms local but not fast systemic ABA responses.
    Hõrak H; Fountain L; Dunn JA; Landymore J; Gray JE
    Plant Cell Environ; 2021 Mar; 44(3):885-899. PubMed ID: 33295045
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Specification of adaxial and abaxial stomata, epidermal structure and photosynthesis to CO2 enrichment in maize leaves.
    Driscoll SP; Prins A; Olmos E; Kunert KJ; Foyer CH
    J Exp Bot; 2006; 57(2):381-90. PubMed ID: 16371401
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development.
    Chater CCC; Oliver J; Casson S; Gray JE
    New Phytol; 2014 Apr; 202(2):376-391. PubMed ID: 24611444
    [TBL] [Abstract][Full Text] [Related]  

  • 36. OnGuard3e: A predictive, ecophysiology-ready tool for gas exchange and photosynthesis research.
    Nguyen TH; Silva-Alvim FAL; Hills A; Blatt MR
    Plant Cell Environ; 2023 Nov; 46(11):3644-3658. PubMed ID: 37498151
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cadmium-induced plant stress investigated by scanning electrochemical microscopy.
    Zhu R; Macfie SM; Ding Z
    J Exp Bot; 2005 Nov; 56(421):2831-8. PubMed ID: 16216848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hexokinase mediates stomatal closure.
    Kelly G; Moshelion M; David-Schwartz R; Halperin O; Wallach R; Attia Z; Belausov E; Granot D
    Plant J; 2013 Sep; 75(6):977-88. PubMed ID: 23738737
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    Hassidim M; Dakhiya Y; Turjeman A; Hussien D; Shor E; Anidjar A; Goldberg K; Green RM
    Plant Physiol; 2017 Dec; 175(4):1864-1877. PubMed ID: 29084902
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest.
    Ichie T; Inoue Y; Takahashi N; Kamiya K; Kenzo T
    J Plant Res; 2016 Jul; 129(4):625-635. PubMed ID: 26879931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.