These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 31921265)
1. Proteome Analysis of the Gametophytes of a Western Himalayan Fern Sareen B; Thapa P; Joshi R; Bhattacharya A Front Plant Sci; 2019; 10():1623. PubMed ID: 31921265 [TBL] [Abstract][Full Text] [Related]
2. Differential gene expression profiling of one- and two-dimensional apogamous gametophytes of the fern Dryopteris affinis ssp. affinis. Wyder S; Rivera A; Valdés AE; Cañal MJ; Gagliardini V; Fernández H; Grossniklaus U Plant Physiol Biochem; 2020 Mar; 148():302-311. PubMed ID: 32000107 [TBL] [Abstract][Full Text] [Related]
3. Photographic analysis of field-monitored fern gametophyte development and response to environmental stress. Schneller JJ; Farrar DR Appl Plant Sci; 2022; 10(2):e11470. PubMed ID: 35495189 [TBL] [Abstract][Full Text] [Related]
4. Proteomic approaches to sexual development mediated by antheridiogen in the fern Blechnum spicant L. Valledor L; Menéndez V; Canal MJ; Revilla A; Fernández H Proteomics; 2014 Sep; 14(17-18):2061-71. PubMed ID: 25044718 [TBL] [Abstract][Full Text] [Related]
5. The Shared Proteome of the Apomictic Fern Ojosnegros S; Alvarez JM; Grossmann J; Gagliardini V; Quintanilla LG; Grossniklaus U; Fernández H Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430514 [TBL] [Abstract][Full Text] [Related]
6. Proteomic analysis of gametophytic sex expression in the fern Ceratopteris thalictroides. Chen X; Chen Z; Huang W; Fu H; Wang Q; Wang Y; Cao J PLoS One; 2019; 14(8):e0221470. PubMed ID: 31425560 [TBL] [Abstract][Full Text] [Related]
7. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses. Cheng ZW; Chen ZY; Yan X; Bian YW; Deng X; Yan YM J Proteomics; 2018 Jan; 170():1-13. PubMed ID: 28986270 [TBL] [Abstract][Full Text] [Related]
8. Gametophyte contribution to sporophyte growth on the basis of carbon gain in the fern Thelypteris palustris: effect of gametophyte organic-matter production on sporophytes. Sakamaki Y; Ino Y J Plant Res; 2007 Mar; 120(2):301-8. PubMed ID: 17287891 [TBL] [Abstract][Full Text] [Related]
9. iTRAQ-based comparative proteome analyses of different growth stages revealing the regulatory role of reactive oxygen species in the fruiting body development of Tong X; Wang F; Zhang H; Bai J; Dong Q; Yue P; Jiang X; Li X; Wang L; Guo J PeerJ; 2021; 9():e10940. PubMed ID: 33717691 [TBL] [Abstract][Full Text] [Related]
10. Identifying cryptic fern gametophytes using DNA barcoding: A review. Nitta JH; Chambers SM Appl Plant Sci; 2022; 10(2):e11465. PubMed ID: 35495195 [TBL] [Abstract][Full Text] [Related]
11. The effect of sucrose on the differentiation of excised fern leaf tissue into either gametophytes of sporophytes. Hirsch AM Plant Physiol; 1975 Sep; 56(3):390-3. PubMed ID: 16659310 [TBL] [Abstract][Full Text] [Related]
12. Understanding mechanisms of rarity in pteridophytes: competition and climate change threaten the rare fern Asplenium scolopendrium var. americanum (Aspleniaceae). Testo WL; Watkins JE Am J Bot; 2013 Nov; 100(11):2261-70. PubMed ID: 24186961 [TBL] [Abstract][Full Text] [Related]
13. Mycorrhizal fungi modify element distribution in gametophytes and sporophytes of a fern Pellaeaviridis from metaliferous soils. Turnau K; Przybyłowicz WJ; Ryszka P; Orłowska E; Anielska T; Mesjasz-Przybyłowicz J Chemosphere; 2013 Aug; 92(9):1267-73. PubMed ID: 23714153 [TBL] [Abstract][Full Text] [Related]
14. Proteome and Interactome Linked to Metabolism, Genetic Information Processing, and Abiotic Stress in Gametophytes of Two Woodferns. Ojosnegros S; Alvarez JM; Grossmann J; Gagliardini V; Quintanilla LG; Grossniklaus U; Fernández H Int J Mol Sci; 2023 Aug; 24(15):. PubMed ID: 37569809 [TBL] [Abstract][Full Text] [Related]
15. Identification of differentially accumulated proteins involved in regulating independent and combined osmosis and cadmium stress response in Brachypodium seedling roots. Chen Z; Zhu D; Wu J; Cheng Z; Yan X; Deng X; Yan Y Sci Rep; 2018 May; 8(1):7790. PubMed ID: 29773844 [TBL] [Abstract][Full Text] [Related]
16. Phenology and wintering capacity of sporophytes and gametophytes of ferns native to northern Japan. Sato T Oecologia; 1982 Oct; 55(1):53-61. PubMed ID: 28309902 [TBL] [Abstract][Full Text] [Related]
17. Reproduction and the pheromonal regulation of sex type in fern gametophytes. Atallah NM; Banks JA Front Plant Sci; 2015; 6():100. PubMed ID: 25798139 [TBL] [Abstract][Full Text] [Related]
18. Early development in fern gametophytes: interpreting the transition to prothallial architecture in terms of coordinated photosynthate production and osmotic ion uptake. Racusen RH Ann Bot; 2002 Feb; 89(2):227-40. PubMed ID: 12099354 [TBL] [Abstract][Full Text] [Related]
19. The distribution of plasmodesmata and its relationship to morphogenesis in fern gametophytes. Tilney LG; Cooke TJ; Connelly PS; Tilney MS Development; 1990 Dec; 110(4):1209-21. PubMed ID: 2100259 [TBL] [Abstract][Full Text] [Related]
20. iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings. Jiang Z; Jin F; Shan X; Li Y Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31779286 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]