These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 31921269)
1. TPLATE Recruitment Reveals Endocytic Dynamics at Sites of Symbiotic Interface Assembly in Arbuscular Mycorrhizal Interactions. Russo G; Carotenuto G; Fiorilli V; Volpe V; Faccio A; Bonfante P; Chabaud M; Chiapello M; Van Damme D; Genre A Front Plant Sci; 2019; 10():1628. PubMed ID: 31921269 [No Abstract] [Full Text] [Related]
2. Multiple exocytotic markers accumulate at the sites of perifungal membrane biogenesis in arbuscular mycorrhizas. Genre A; Ivanov S; Fendrych M; Faccio A; Zársky V; Bisseling T; Bonfante P Plant Cell Physiol; 2012 Jan; 53(1):244-55. PubMed ID: 22138099 [TBL] [Abstract][Full Text] [Related]
3. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. Russo G; Carotenuto G; Fiorilli V; Volpe V; Chiapello M; Van Damme D; Genre A New Phytol; 2019 Jan; 221(2):1036-1048. PubMed ID: 30152051 [TBL] [Abstract][Full Text] [Related]
4. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Genre A; Chabaud M; Faccio A; Barker DG; Bonfante P Plant Cell; 2008 May; 20(5):1407-20. PubMed ID: 18515499 [TBL] [Abstract][Full Text] [Related]
5. The membrane proteome of Medicago truncatula roots displays qualitative and quantitative changes in response to arbuscular mycorrhizal symbiosis. Abdallah C; Valot B; Guillier C; Mounier A; Balliau T; Zivy M; van Tuinen D; Renaut J; Wipf D; Dumas-Gaudot E; Recorbet G J Proteomics; 2014 Aug; 108():354-68. PubMed ID: 24925269 [TBL] [Abstract][Full Text] [Related]
6. Extensive membrane systems at the host-arbuscular mycorrhizal fungus interface. Ivanov S; Austin J; Berg RH; Harrison MJ Nat Plants; 2019 Feb; 5(2):194-203. PubMed ID: 30737512 [TBL] [Abstract][Full Text] [Related]
7. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis. An J; Zeng T; Ji C; de Graaf S; Zheng Z; Xiao TT; Deng X; Xiao S; Bisseling T; Limpens E; Pan Z New Phytol; 2019 Oct; 224(1):396-408. PubMed ID: 31148173 [TBL] [Abstract][Full Text] [Related]
8. Medicago truncatula mtpt4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Javot H; Penmetsa RV; Breuillin F; Bhattarai KK; Noar RD; Gomez SK; Zhang Q; Cook DR; Harrison MJ Plant J; 2011 Dec; 68(6):954-65. PubMed ID: 21848683 [TBL] [Abstract][Full Text] [Related]
9. Cell wall remodeling in mycorrhizal symbiosis: a way towards biotrophism. Balestrini R; Bonfante P Front Plant Sci; 2014; 5():237. PubMed ID: 24926297 [TBL] [Abstract][Full Text] [Related]
10. Microtubule organization in root cells of Medicago truncatula during development of an arbuscular mycorrhizal symbiosis with Glomus versiforme. Blancaflor EB; Zhao L; Harrison MJ Protoplasma; 2001; 217(4):154-65. PubMed ID: 11732307 [TBL] [Abstract][Full Text] [Related]
11. A Che X; Wang S; Ren Y; Xie X; Hu W; Chen H; Tang M Microbiol Spectr; 2022 Dec; 10(6):e0147022. PubMed ID: 36227088 [TBL] [Abstract][Full Text] [Related]
12. SNARE Complexity in Arbuscular Mycorrhizal Symbiosis. Huisman R; Hontelez J; Bisseling T; Limpens E Front Plant Sci; 2020; 11():354. PubMed ID: 32308661 [TBL] [Abstract][Full Text] [Related]
13. Adaptin-like protein TPLATE and clathrin recruitment during plant somatic cytokinesis occurs via two distinct pathways. Van Damme D; Gadeyne A; Vanstraelen M; Inzé D; Van Montagu MC; De Jaeger G; Russinova E; Geelen D Proc Natl Acad Sci U S A; 2011 Jan; 108(2):615-20. PubMed ID: 21187379 [TBL] [Abstract][Full Text] [Related]
14. The plasma membrane proteome of Medicago truncatula roots as modified by arbuscular mycorrhizal symbiosis. Aloui A; Recorbet G; Lemaître-Guillier C; Mounier A; Balliau T; Zivy M; Wipf D; Dumas-Gaudot E Mycorrhiza; 2018 Jan; 28(1):1-16. PubMed ID: 28725961 [TBL] [Abstract][Full Text] [Related]
15. Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Kobae Y; Hata S Plant Cell Physiol; 2010 Mar; 51(3):341-53. PubMed ID: 20097910 [TBL] [Abstract][Full Text] [Related]
16. Lead uptake by the symbiotic Daucus carota L.-Glomus intraradices system and its effect on the morphology of extra- and intraradical fungal microstructures. Alvarado-López CJ; Dasgupta-Schubert N; Ambriz JE; Arteaga-Velazquez JC; Villegas JA Environ Sci Pollut Res Int; 2019 Jan; 26(1):381-391. PubMed ID: 30402695 [TBL] [Abstract][Full Text] [Related]
17. Haustorium Formation in Medicago truncatula Roots Infected by Phytophthora palmivora Does Not Involve the Common Endosymbiotic Program Shared by Arbuscular Mycorrhizal Fungi and Rhizobia. Huisman R; Bouwmeester K; Brattinga M; Govers F; Bisseling T; Limpens E Mol Plant Microbe Interact; 2015 Dec; 28(12):1271-80. PubMed ID: 26313411 [TBL] [Abstract][Full Text] [Related]
18. Actin versus tubulin configuration in arbuscule-containing cells from mycorrhizal tobacco roots. Genre A; Bonfante P New Phytol; 1998 Dec; 140(4):745-752. PubMed ID: 33862958 [TBL] [Abstract][Full Text] [Related]
19. Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Pumplin N; Zhang X; Noar RD; Harrison MJ Proc Natl Acad Sci U S A; 2012 Mar; 109(11):E665-72. PubMed ID: 22355114 [TBL] [Abstract][Full Text] [Related]
20. EXO70I Is Required for Development of a Sub-domain of the Periarbuscular Membrane during Arbuscular Mycorrhizal Symbiosis. Zhang X; Pumplin N; Ivanov S; Harrison MJ Curr Biol; 2015 Aug; 25(16):2189-95. PubMed ID: 26234213 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]