These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31921374)

  • 1. Effects of acetaldehyde-induced DNA lesions on DNA metabolism.
    Tsuruta H; Sonohara Y; Tohashi K; Aoki Shioi N; Iwai S; Kuraoka I
    Genes Environ; 2020; 42():2. PubMed ID: 31921374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetaldehyde forms covalent GG intrastrand crosslinks in DNA.
    Sonohara Y; Yamamoto J; Tohashi K; Takatsuka R; Matsuda T; Iwai S; Kuraoka I
    Sci Rep; 2019 Jan; 9(1):660. PubMed ID: 30679737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acetaldehyde induces NER repairable mutagenic DNA lesions.
    Sonohara Y; Takatsuka R; Masutani C; Iwai S; Kuraoka I
    Carcinogenesis; 2022 Feb; 43(1):52-59. PubMed ID: 34546339
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and stability of acetaldehyde-induced crosslinks between poly-lysine and poly-deoxyguanosine.
    Kuykendall JR; Bogdanffy MS
    Mutat Res; 1994 Nov; 311(1):49-56. PubMed ID: 7526174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific tandem GG to TT base substitutions induced by acetaldehyde are due to intra-strand crosslinks between adjacent guanine bases.
    Matsuda T; Kawanishi M; Yagi T; Matsui S; Takebe H
    Nucleic Acids Res; 1998 Apr; 26(7):1769-74. PubMed ID: 9512551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alcohol-derived DNA crosslinks are repaired by two distinct mechanisms.
    Hodskinson MR; Bolner A; Sato K; Kamimae-Lanning AN; Rooijers K; Witte M; Mahesh M; Silhan J; Petek M; Williams DM; Kind J; Chin JW; Patel KJ; Knipscheer P
    Nature; 2020 Mar; 579(7800):603-608. PubMed ID: 32132710
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dosimetry, toxicity and carcinogenicity of inspired acetaldehyde in the rat.
    Morris JB
    Mutat Res; 1997 Oct; 380(1-2):113-24. PubMed ID: 9385393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of acetaldehyde-derived DNA adducts due to alcohol exposure.
    Yu HS; Oyama T; Isse T; Kitagawa K; Pham TT; Tanaka M; Kawamoto T
    Chem Biol Interact; 2010 Dec; 188(3):367-75. PubMed ID: 20813101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Miscoding potential of the N2-ethyl-2'-deoxyguanosine DNA adduct by the exonuclease-free Klenow fragment of Escherichia coli DNA polymerase I.
    Terashima I; Matsuda T; Fang TW; Suzuki N; Kobayashi J; Kohda K; Shibutani S
    Biochemistry; 2001 Apr; 40(13):4106-14. PubMed ID: 11300791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential blocking effects of the acetaldehyde-derived DNA lesion N2-ethyl-2'-deoxyguanosine on transcription by multisubunit and single subunit RNA polymerases.
    Cheng TF; Hu X; Gnatt A; Brooks PJ
    J Biol Chem; 2008 Oct; 283(41):27820-27828. PubMed ID: 18669632
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase mutagenic bypass and proofreading of endogenous DNA lesions.
    Eckert KA; Opresko PL
    Mutat Res; 1999 Mar; 424(1-2):221-36. PubMed ID: 10064863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translesional synthesis on DNA templates containing site-specifically placed deoxyadenosine and deoxyguanosine adducts formed by the plant carcinogen aristolochic acid.
    Broschard TH; Wiessler M; von der Lieth CW; Schmeiser HH
    Carcinogenesis; 1994 Oct; 15(10):2331-40. PubMed ID: 7955074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of DNA adducts of acetaldehyde.
    Wang M; McIntee EJ; Cheng G; Shi Y; Villalta PW; Hecht SS
    Chem Res Toxicol; 2000 Nov; 13(11):1149-57. PubMed ID: 11087437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DNA adducts from acetaldehyde: implications for alcohol-related carcinogenesis.
    Brooks PJ; Theruvathu JA
    Alcohol; 2005 Apr; 35(3):187-93. PubMed ID: 16054980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis.
    Marietta C; Thompson LH; Lamerdin JE; Brooks PJ
    Mutat Res; 2009 May; 664(1-2):77-83. PubMed ID: 19428384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New DNA adducts of crotonaldehyde and acetaldehyde.
    Hecht SS; McIntee EJ; Wang M
    Toxicology; 2001 Sep; 166(1-2):31-6. PubMed ID: 11518608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Implications of acetaldehyde-derived DNA adducts for understanding alcohol-related carcinogenesis.
    Balbo S; Brooks PJ
    Adv Exp Med Biol; 2015; 815():71-88. PubMed ID: 25427902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [13C2]-Acetaldehyde promotes unequivocal formation of 1,N2-propano-2'-deoxyguanosine in human cells.
    Garcia CC; Angeli JP; Freitas FP; Gomes OF; de Oliveira TF; Loureiro AP; Di Mascio P; Medeiros MH
    J Am Chem Soc; 2011 Jun; 133(24):9140-3. PubMed ID: 21604744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro method for detecting genetic toxicity based on inhibition of RNA synthesis by DNA lesions.
    Sonohara Y; Iwai S; Kuraoka I
    Genes Environ; 2015; 37():8. PubMed ID: 27350805
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of DNA adduct formation in the oral cavity after drinking alcohol.
    Balbo S; Meng L; Bliss RL; Jensen JA; Hatsukami DK; Hecht SS
    Cancer Epidemiol Biomarkers Prev; 2012 Apr; 21(4):601-8. PubMed ID: 22301829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.