These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 31921552)

  • 1. Decoupling Thermoelectric Performance and Stability in Liquid-Like Thermoelectric Materials.
    Mao T; Qiu P; Hu P; Du X; Zhao K; Wei TR; Xiao J; Shi X; Chen L
    Adv Sci (Weinh); 2020 Jan; 7(1):1901598. PubMed ID: 31921552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Good stability and high thermoelectric performance of Fe doped Cu
    Mao T; Qiu P; Liu J; Du X; Hu P; Zhao K; Ren D; Shi X; Chen L
    Phys Chem Chem Phys; 2020 Apr; 22(14):7374-7380. PubMed ID: 32211646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Stability and Thermoelectric Performance in Cu
    Jiang J; Yang C; Niu Y; Song J; Wang C
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37862-37872. PubMed ID: 34327983
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosting High Thermoelectric Performance of Ni-Doped Cu
    Shen F; Zheng Y; Miao L; Liu C; Gao J; Wang X; Liu P; Yoshida K; Cai H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8385-8391. PubMed ID: 31909970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study on Enhancing the Thermoelectric Stability of the β-Cu
    Tie J; Xu G; Li Y; Fan X; Yang Q; Nan B
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Performance and Stable (Ag, Cd)-Containing ZnSb Thermoelectric Compounds.
    Yang S; Deng T; Qiu P; Xing T; Cheng J; Jin Z; Li P; Shi X; Chen L
    ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35650510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrinsically High Thermoelectric Performance in AgInSe
    Qiu P; Qin Y; Zhang Q; Li R; Yang J; Song Q; Tang Y; Bai S; Shi X; Chen L
    Adv Sci (Weinh); 2018 Mar; 5(3):1700727. PubMed ID: 29593972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelectric Performance of Surface-Engineered Cu
    Xing C; Zhang Y; Xiao K; Han X; Liu Y; Nan B; Ramon MG; Lim KH; Li J; Arbiol J; Poudel B; Nozariasbmarz A; Li W; Ibáñez M; Cabot A
    ACS Nano; 2023 May; 17(9):8442-8452. PubMed ID: 37071412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistically Enhanced Thermoelectric Performance of Cu
    Cheng X; Yang D; Su X; Xie H; Liu W; Zheng Y; Tang X
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55178-55187. PubMed ID: 34783236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing Thermoelectric Performance of CuInTe
    Yang E; Jiang Q; Li G; Tian Z; Li J; Kang H; Chen Z; Guo E; Wang J; Wang T
    ACS Appl Mater Interfaces; 2023 Oct; 15(42):49370-49378. PubMed ID: 37824824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promising and Eco-Friendly Cu
    Liu WD; Yang L; Chen ZG; Zou J
    Adv Mater; 2020 Feb; 32(8):e1905703. PubMed ID: 31944453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu
    Yu J; Li T; Nie G; Zhang BP; Sun Q
    Nanoscale; 2019 May; 11(21):10306-10313. PubMed ID: 31099817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Controlling the Thermal Stability, Threshold Voltage, and Thermoelectric Properties of Cuprous Sulfide Thermoelectrics.
    Xiang S; Liang Y; Han X; Yan P; Zhang X
    Inorg Chem; 2022 Sep; 61(38):14973-14986. PubMed ID: 36099644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermoelectric Performance Enhancement in Commercial Bi
    Li S; Zhao W; Cheng Y; Chen L; Xu M; Guo K; Pan F
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1167-1174. PubMed ID: 36546598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phase Tuning for Enhancing the Thermoelectric Performance of Solution-Synthesized Cu
    Yang M; Liu X; Zhang B; Chen Y; Wang H; Yu J; Wang G; Xu J; Zhou X; Han G
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39541-39549. PubMed ID: 34384212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Terbium Ion Doping in Ca
    Saini S; Yaddanapudi HS; Tian K; Yin Y; Magginetti D; Tiwari A
    Sci Rep; 2017 Mar; 7():44621. PubMed ID: 28317853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Doping Effect on Cu
    Qin Y; Yang L; Wei J; Yang S; Zhang M; Wang X; Yang F
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33327543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Thermoelectric Performance of Cu-Doped PbSe-PbS System Enabled by High-Throughput Experimental Screening.
    You L; Li Z; Ma Q; He S; Zhang Q; Wang F; Wu G; Li Q; Luo P; Zhang J; Luo J
    Research (Wash D C); 2020; 2020():1736798. PubMed ID: 32211611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Are Cu
    Zhao K; Liu K; Yue Z; Wang Y; Song Q; Li J; Guan M; Xu Q; Qiu P; Zhu H; Chen L; Shi X
    Adv Mater; 2019 Dec; 31(49):e1903480. PubMed ID: 31617626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n-type PbTe with Enhanced Thermoelectric Performance.
    Wang Z; Wang G; Wang R; Zhou X; Chen Z; Yin C; Tang M; Hu Q; Tang J; Ang R
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22401-22407. PubMed ID: 29893540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.