These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 31921776)
41. Synthesis and Characteristics of Organic Red-Emissive Materials Based on Phenanthro[9,10-d]imidazole. Liu C; Li J; Man X; Liu H; Sun X; Liu F; Lu P Chem Asian J; 2019 Mar; 14(6):821-827. PubMed ID: 30485692 [TBL] [Abstract][Full Text] [Related]
42. Luminescent carbene-copper(i)-amide polymers for efficient host-free solution-processed OLEDs. Tan Y; Ying A; Xie J; Xie G; Gong S Chem Sci; 2024 Jul; 15(29):11382-11390. PubMed ID: 39055019 [TBL] [Abstract][Full Text] [Related]
43. Thermally Activated Delayed Fluorescence and Aggregation Induced Emission with Through-Space Charge Transfer. Tsujimoto H; Ha DG; Markopoulos G; Chae HS; Baldo MA; Swager TM J Am Chem Soc; 2017 Apr; 139(13):4894-4900. PubMed ID: 28345346 [TBL] [Abstract][Full Text] [Related]
44. Donor-σ-Acceptor Motifs: Thermally Activated Delayed Fluorescence Emitters with Dual Upconversion. Geng Y; D'Aleo A; Inada K; Cui LS; Kim JU; Nakanotani H; Adachi C Angew Chem Int Ed Engl; 2017 Dec; 56(52):16536-16540. PubMed ID: 29105906 [TBL] [Abstract][Full Text] [Related]
45. Combining Charge-Transfer Pathways to Achieve Unique Thermally Activated Delayed Fluorescence Emitters for High-Performance Solution-Processed, Non-doped Blue OLEDs. Chen XL; Jia JH; Yu R; Liao JZ; Yang MX; Lu CZ Angew Chem Int Ed Engl; 2017 Nov; 56(47):15006-15009. PubMed ID: 28990260 [TBL] [Abstract][Full Text] [Related]
46. Thermally Stable and Highly Luminescent Green Emissive Fluorophores with Acenaphtho[1,2-k]fluoranthene Cores and Aromatic Amine Groups. Han L; Ye K; Li C; Zhang Y; Zhang H; Wang Y Chempluschem; 2017 Feb; 82(2):315-322. PubMed ID: 31961538 [TBL] [Abstract][Full Text] [Related]
47. Aggregation-Induced Delayed Fluorescence Based on Donor/Acceptor-Tethered Janus Carborane Triads: Unique Photophysical Properties of Nondoped OLEDs. Furue R; Nishimoto T; Park IS; Lee J; Yasuda T Angew Chem Int Ed Engl; 2016 Jun; 55(25):7171-5. PubMed ID: 27145481 [TBL] [Abstract][Full Text] [Related]
48. Functional Pyrimidine-Based Thermally Activated Delay Fluorescence Emitters: Photophysics, Mechanochromism, and Fabrication of Organic Light-Emitting Diodes. Ganesan P; Ranganathan R; Chi Y; Liu XK; Lee CS; Liu SH; Lee GH; Lin TC; Chen YT; Chou PT Chemistry; 2017 Feb; 23(12):2858-2866. PubMed ID: 28028848 [TBL] [Abstract][Full Text] [Related]
49. Rational Design of Carbazole- and Carboline-Based Polymeric Host Materials for Realizing High-Efficiency Solution-Processed Thermally Activated Delayed Fluorescence Organic Light-Emitting Diode. Hwang J; Lee C; Jeong JE; Kim CY; Woo HY; Park S; Cho MJ; Choi DH ACS Appl Mater Interfaces; 2020 Feb; 12(7):8485-8494. PubMed ID: 31990169 [TBL] [Abstract][Full Text] [Related]
50. Circularly Polarized Electroluminescence of Thermally Activated Delayed Fluorescence-Active Chiral Binaphthyl-Based Luminogens. Wang Y; Zhang Y; Hu W; Quan Y; Li Y; Cheng Y ACS Appl Mater Interfaces; 2019 Jul; 11(29):26165-26173. PubMed ID: 31240905 [TBL] [Abstract][Full Text] [Related]
51. Recent Advances in Thermally Activated Delayed Fluorescent Polymer-Molecular Designing Strategies. Yin X; He Y; Wang X; Wu Z; Pang E; Xu J; Wang JA Front Chem; 2020; 8():725. PubMed ID: 32923428 [TBL] [Abstract][Full Text] [Related]
52. Exciplex Formation and Electromer Blocking for Highly Efficient Blue Thermally Activated Delayed Fluorescence OLEDs with All-Solution-Processed Organic Layers. Ban X; Chen F; Pan J; Liu Y; Zhu A; Jiang W; Sun Y Chemistry; 2020 Mar; 26(14):3090-3102. PubMed ID: 31837285 [TBL] [Abstract][Full Text] [Related]
53. Structure-Property Correlation in Luminescent Indolo[3,2-b]indole (IDID) Derivatives: Unraveling the Mechanism of High Efficiency Thermally Activated Delayed Fluorescence (TADF). Ryoo CH; Cho I; Han J; Yang JH; Kwon JE; Kim S; Jeong H; Lee C; Park SY ACS Appl Mater Interfaces; 2017 Nov; 9(47):41413-41420. PubMed ID: 29111658 [TBL] [Abstract][Full Text] [Related]
54. Molecular Engineering of Thermally Activated Delayed Fluorescence Emitters with Aggregation-Induced Emission via Introducing Intramolecular Hydrogen-Bonding Interactions for Efficient Solution-Processed Nondoped OLEDs. Ma F; Zhao G; Zheng Y; He F; Hasrat K; Qi Z ACS Appl Mater Interfaces; 2020 Jan; 12(1):1179-1189. PubMed ID: 31826613 [TBL] [Abstract][Full Text] [Related]
55. Pyridine-, Pyrimidine-, and Triazine-Based Thermally Activated Delayed Fluorescence Emitters. Lee GH; Kim YS J Nanosci Nanotechnol; 2018 Oct; 18(10):7211-7215. PubMed ID: 29954561 [TBL] [Abstract][Full Text] [Related]
56. Synthesis of carbazole-based polymers with 1,3,4-oxadiazole pendant group and their application in organic light-emitting diodes. Wang H; Ryu JT; Cao C; Kwon Y J Nanosci Nanotechnol; 2008 Sep; 8(9):4846-50. PubMed ID: 19049122 [TBL] [Abstract][Full Text] [Related]
57. Blue organic light-emitting diodes with hybridized local and charge-transfer excited state realizing high external quantum efficiency. Jayabharathi J; Thilagavathy S; Thanikachalam V RSC Adv; 2021 Feb; 11(15):8606-8618. PubMed ID: 35423407 [TBL] [Abstract][Full Text] [Related]
59. Deep-Blue Oxadiazole-Containing Thermally Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. Wong MY; Krotkus S; Copley G; Li W; Murawski C; Hall D; Hedley GJ; Jaricot M; Cordes DB; Slawin AMZ; Olivier Y; Beljonne D; Muccioli L; Moral M; Sancho-Garcia JC; Gather MC; Samuel IDW; Zysman-Colman E ACS Appl Mater Interfaces; 2018 Oct; 10(39):33360-33372. PubMed ID: 30192504 [TBL] [Abstract][Full Text] [Related]
60. Effects of Electron Affinity and Steric Hindrance of the Trifluoromethyl Group on the π-Bridge in Designing Blue Thermally Activated Delayed Fluorescence Emitters. Li H; Li J; Liu D; Huang T; Li D Chemistry; 2020 May; 26(30):6899-6909. PubMed ID: 32212179 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]