BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 31921787)

  • 1. Lignocellulosic Biomass: Understanding Recalcitrance and Predicting Hydrolysis.
    Zoghlami A; Paës G
    Front Chem; 2019; 7():874. PubMed ID: 31921787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lignocellulosic biomass: Acid and alkaline pretreatments and their effects on biomass recalcitrance - Conventional processing and recent advances.
    Lorenci Woiciechowski A; Dalmas Neto CJ; Porto de Souza Vandenberghe L; de Carvalho Neto DP; Novak Sydney AC; Letti LAJ; Karp SG; Zevallos Torres LA; Soccol CR
    Bioresour Technol; 2020 May; 304():122848. PubMed ID: 32113832
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating polymer interplay after hot water pretreatment to investigate maize stem internode recalcitrance.
    Leroy A; Falourd X; Foucat L; Méchin V; Guillon F; Paës G
    Biotechnol Biofuels; 2021 Jul; 14(1):164. PubMed ID: 34332625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insights into key factors affecting bioconversion efficiency of rattan biomass: The supramolecular structural variations of cellulose.
    Ling Z; Wang J; Zhao J; Feng L; Ma J; Liu X
    Bioresour Technol; 2023 Feb; 369():128381. PubMed ID: 36423755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current Understanding of the Correlation of Lignin Structure with Biomass Recalcitrance.
    Li M; Pu Y; Ragauskas AJ
    Front Chem; 2016; 4():45. PubMed ID: 27917379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An In-Depth Understanding of Biomass Recalcitrance Using Natural Poplar Variants as the Feedstock.
    Meng X; Pu Y; Yoo CG; Li M; Bali G; Park DY; Gjersing E; Davis MF; Muchero W; Tuskan GA; Tschaplinski TJ; Ragauskas AJ
    ChemSusChem; 2017 Jan; 10(1):139-150. PubMed ID: 27882723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recent advances in understanding the role of cellulose accessibility in enzymatic hydrolysis of lignocellulosic substrates.
    Meng X; Ragauskas AJ
    Curr Opin Biotechnol; 2014 Jun; 27():150-8. PubMed ID: 24549148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials.
    Sun S; Sun S; Cao X; Sun R
    Bioresour Technol; 2016 Jan; 199():49-58. PubMed ID: 26321216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of hydrotropic pretreatment on lignocellulosic biomass.
    Devendra LP; Kiran Kumar M; Pandey A
    Bioresour Technol; 2016 Aug; 213():350-358. PubMed ID: 27013188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomass recalcitrance: a multi-scale, multi-factor, and conversion-specific property.
    McCann MC; Carpita NC
    J Exp Bot; 2015 Jul; 66(14):4109-18. PubMed ID: 26060266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent advances in lignocellulosic biomass for biofuels and value-added bioproducts - A critical review.
    Ashokkumar V; Venkatkarthick R; Jayashree S; Chuetor S; Dharmaraj S; Kumar G; Chen WH; Ngamcharussrivichai C
    Bioresour Technol; 2022 Jan; 344(Pt B):126195. PubMed ID: 34710596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance.
    Costa TH; Vega-Sánchez ME; Milagres AM; Scheller HV; Ferraz A
    Biotechnol Biofuels; 2016; 9():99. PubMed ID: 27148403
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming biomass recalcitrance by synergistic pretreatment of mechanical activation and metal salt for enhancing enzymatic conversion of lignocellulose.
    Zhang Y; Huang M; Su J; Hu H; Yang M; Huang Z; Chen D; Wu J; Feng Z
    Biotechnol Biofuels; 2019; 12():12. PubMed ID: 30647772
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass.
    Dos Santos AC; Ximenes E; Kim Y; Ladisch MR
    Trends Biotechnol; 2019 May; 37(5):518-531. PubMed ID: 30477739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomass-water interactions correlate to recalcitrance and are intensified by pretreatment: An investigation of water constraint and retention in pretreated spruce using low field NMR and water retention value techniques.
    Weiss ND; Thygesen LG; Felby C; Roslander C; Gourlay K
    Biotechnol Prog; 2017 Jan; 33(1):146-153. PubMed ID: 27802565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials.
    Prado CA; Antunes FAF; Rocha TM; Sánchez-Muñoz S; Barbosa FG; Terán-Hilares R; Cruz-Santos MM; Arruda GL; da Silva SS; Santos JC
    Bioresour Technol; 2022 Feb; 345():126458. PubMed ID: 34863850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments.
    Pu Y; Hu F; Huang F; Davison BH; Ragauskas AJ
    Biotechnol Biofuels; 2013 Jan; 6(1):15. PubMed ID: 23356640
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective chemical pretreatment method for lignocellulosic biomass with substituted imidazoles.
    Kang Y; Realff MJ; Sohn M; Lee JH; Bommarius AS
    Biotechnol Prog; 2015; 31(1):25-34. PubMed ID: 25311613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real Time and Quantitative Imaging of Lignocellulosic Films Hydrolysis by Atomic Force Microscopy Reveals Lignin Recalcitrance at Nanoscale.
    Lambert E; Aguié-Béghin V; Dessaint D; Foulon L; Chabbert B; Paës G; Molinari M
    Biomacromolecules; 2019 Jan; 20(1):515-527. PubMed ID: 30532964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.