BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31922132)

  • 1. General Growth of Carbon Nanotubes for Cerium Redox Reactions in High-Efficiency Redox Flow Batteries.
    Na Z; Yao R; Yan Q; Sun X; Huang G
    Research (Wash D C); 2019; 2019():3616178. PubMed ID: 31922132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Graphite felts modified by vertical two-dimensional WO
    Na Z; Wang X; Yin D; Wang L
    Nanoscale; 2018 Jun; 10(22):10705-10712. PubMed ID: 29845171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional Composite Catalysts for Al-O
    Liu Y; Zhan F; Wang B; Xie B; Sun Q; Jiang H; Li J; Sun X
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21526-21535. PubMed ID: 31135132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries.
    Wang S; Zhao X; Cochell T; Manthiram A
    J Phys Chem Lett; 2012 Aug; 3(16):2164-7. PubMed ID: 26295765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine-derived nitrogen-doped carboxyl multiwalled carbon nanotube-modified graphite felt with improved electrochemical activity for vanadium redox flow batteries.
    Li Q; Bai A; Zhang T; Li S; Sun H
    R Soc Open Sci; 2020 Jul; 7(7):200402. PubMed ID: 32874635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical Vapor Deposition-Grown Nickel-Encapsulated N-Doped Carbon Nanotubes as a Highly Active Oxygen Reduction Reaction Catalyst without Direct Metal-Nitrogen Coordination.
    Ganguly D; Sundara R; Ramanujam K
    ACS Omega; 2018 Oct; 3(10):13609-13620. PubMed ID: 31458066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Electrodes with Maximized Spatial Catalysis for Vanadium Redox Flow Batteries.
    Sheng H; Ma Q; Yu JG; Zhang XD; Zhang W; Yin YX; Wu X; Zeng XX; Guo YG
    ACS Appl Mater Interfaces; 2018 Nov; 10(45):38922-38927. PubMed ID: 30335954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphene quantum dot-decorated carbon electrodes for energy storage in vanadium redox flow batteries.
    Daugherty MC; Gu S; Aaron DS; Kelly RE; Ashraf Gandomi Y; Hsieh CT
    Nanoscale; 2020 Apr; 12(14):7834-7842. PubMed ID: 32222752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of a porous graphite felt electrode for advance vanadium redox flow batteries.
    Zhang L; Yue J; Deng Q; Ling W; Zhou CJ; Zeng XX; Zhou C; Wu XW; Wu Y
    RSC Adv; 2020 Apr; 10(23):13374-13378. PubMed ID: 35493023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tubular assemblies of N-doped carbon nanotubes loaded with NiFe alloy nanoparticles as efficient bifunctional catalysts for rechargeable zinc-air batteries.
    Xie X; Shang L; Shi R; Waterhouse GIN; Zhao J; Zhang T
    Nanoscale; 2020 Jun; 12(24):13129-13136. PubMed ID: 32584366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiochemical and Electrochemical Properties of a Heat-Treated Electrode for All-Iron Redox Flow Batteries.
    Devi N; Mishra JN; Singh P; Chen YS
    Nanomaterials (Basel); 2024 May; 14(9):. PubMed ID: 38727394
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D Carbon Nanonetwork Coated Composite Electrode with Multi-Heteroatom Doping for High-Rate Vanadium Redox Flow Batteries.
    Ling W; Wu X; Mo F
    Polymers (Basel); 2022 Dec; 14(23):. PubMed ID: 36501663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binder-Free CNT-Modified Excellent Electrodes for All-Vanadium Redox Flow Batteries.
    Devi N; Singh P; Chen YS
    Nanomaterials (Basel); 2024 Apr; 14(9):. PubMed ID: 38727361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Growth of Amorphous MnO
    Huangyang X; Wang H; Zhou W; Deng Q; Liu Z; Zeng XX; Wu X; Ling W
    ACS Appl Mater Interfaces; 2024 Jun; 16(25):32189-32197. PubMed ID: 38870428
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon-Carbon Nanotube Hybrids as Host for Lithium-Sulfur Batteries.
    Cai J; Wu C; Yang S; Zhu Y; Shen PK; Zhang K
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):33876-33886. PubMed ID: 28914524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering the Core-Shell-Structured NCNTs-Ni
    Chen M; Jing QS; Sun HB; Xu JQ; Yuan ZY; Ren JT; Ding AX; Huang ZY; Dong MY
    Langmuir; 2019 May; 35(19):6321-6332. PubMed ID: 31009568
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotubes Grown on Graphite Films as Effective Interface Enhancement for an Aluminum Matrix Laminated Composite in Thermal Management Applications.
    Chang J; Zhang Q; Lin Y; Zhou C; Yang W; Yan L; Wu G
    ACS Appl Mater Interfaces; 2018 Nov; 10(44):38350-38358. PubMed ID: 30360077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of novel catalyst-free Fe
    Huang H; Zhang H; Yan Y
    J Hazard Mater; 2021 Apr; 407():124371. PubMed ID: 33248822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon-nanotube-doped Pd-Ni bimetallic three-dimensional electrode for electrocatalytic hydrodechlorination of 4-chlorophenol: Enhanced activity and stability.
    Wu Y; Gan L; Zhang S; Song H; Lu C; Li W; Wang Z; Jiang B; Li A
    J Hazard Mater; 2018 Aug; 356():17-25. PubMed ID: 29804010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ZrO2-Nanoparticle-Modified Graphite Felt: Bifunctional Effects on Vanadium Flow Batteries.
    Zhou H; Shen Y; Xi J; Qiu X; Chen L
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15369-78. PubMed ID: 27229444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.