BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1138 related articles for article (PubMed ID: 31922560)

  • 1. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Association of Frailty With 30-Day Outcomes for Acute Myocardial Infarction, Heart Failure, and Pneumonia Among Elderly Adults.
    Kundi H; Wadhera RK; Strom JB; Valsdottir LR; Shen C; Kazi DS; Yeh RW
    JAMA Cardiol; 2019 Nov; 4(11):1084-1091. PubMed ID: 31553402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Based Models Incorporating Social Determinants of Health vs Traditional Models for Predicting In-Hospital Mortality in Patients With Heart Failure.
    Segar MW; Hall JL; Jhund PS; Powell-Wiley TM; Morris AA; Kao D; Fonarow GC; Hernandez R; Ibrahim NE; Rutan C; Navar AM; Stevens LM; Pandey A
    JAMA Cardiol; 2022 Aug; 7(8):844-854. PubMed ID: 35793094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction.
    Angraal S; Mortazavi BJ; Gupta A; Khera R; Ahmad T; Desai NR; Jacoby DL; Masoudi FA; Spertus JA; Krumholz HM
    JACC Heart Fail; 2020 Jan; 8(1):12-21. PubMed ID: 31606361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage.
    Goto T; Camargo CA; Faridi MK; Freishtat RJ; Hasegawa K
    JAMA Netw Open; 2019 Jan; 2(1):e186937. PubMed ID: 30646206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Machine-Learning Algorithms for Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions.
    Lo-Ciganic WH; Huang JL; Zhang HH; Weiss JC; Wu Y; Kwoh CK; Donohue JM; Cochran G; Gordon AJ; Malone DC; Kuza CC; Gellad WF
    JAMA Netw Open; 2019 Mar; 2(3):e190968. PubMed ID: 30901048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative Effectiveness of New Approaches to Improve Mortality Risk Models From Medicare Claims Data.
    Krumholz HM; Coppi AC; Warner F; Triche EW; Li SX; Mahajan S; Li Y; Bernheim SM; Grady J; Dorsey K; Lin Z; Normand ST
    JAMA Netw Open; 2019 Jul; 2(7):e197314. PubMed ID: 31314120
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and validation of 15-month mortality prediction models: a retrospective observational comparison of machine-learning techniques in a national sample of Medicare recipients.
    Berg GD; Gurley VF
    BMJ Open; 2019 Jul; 9(7):e022935. PubMed ID: 31315852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of machine learning approaches to administrative claims data to predict clinical outcomes in medical and surgical patient populations.
    MacKay EJ; Stubna MD; Chivers C; Draugelis ME; Hanson WJ; Desai ND; Groeneveld PW
    PLoS One; 2021; 16(6):e0252585. PubMed ID: 34081720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development, Validation, and Evaluation of a Simple Machine Learning Model to Predict Cirrhosis Mortality.
    Kanwal F; Taylor TJ; Kramer JR; Cao Y; Smith D; Gifford AL; El-Serag HB; Naik AD; Asch SM
    JAMA Netw Open; 2020 Nov; 3(11):e2023780. PubMed ID: 33141161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and Preliminary Validation of a Medicare Claims-Based Model to Predict Left Ventricular Ejection Fraction Class in Patients With Heart Failure.
    Desai RJ; Lin KJ; Patorno E; Barberio J; Lee M; Levin R; Evers T; Wang SV; Schneeweiss S
    Circ Cardiovasc Qual Outcomes; 2018 Dec; 11(12):e004700. PubMed ID: 30562067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine ​learning algorithms for claims data-based prediction of in-hospital mortality in patients with heart failure.
    König S; Pellissier V; Hohenstein S; Bernal A; Ueberham L; Meier-Hellmann A; Kuhlen R; Hindricks G; Bollmann A
    ESC Heart Fail; 2021 Aug; 8(4):3026-3036. PubMed ID: 34085775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Association of Hospital Performance Based on 30-Day Risk-Standardized Mortality Rate With Long-term Survival After Heart Failure Hospitalization: An Analysis of the Get With The Guidelines-Heart Failure Registry.
    Pandey A; Patel KV; Liang L; DeVore AD; Matsouaka R; Bhatt DL; Yancy CW; Hernandez AF; Heidenreich PA; de Lemos JA; Fonarow GC
    JAMA Cardiol; 2018 Jun; 3(6):489-497. PubMed ID: 29532056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure.
    Wang Q; Li B; Chen K; Yu F; Su H; Hu K; Liu Z; Wu G; Yan J; Su G
    ESC Heart Fail; 2021 Dec; 8(6):5363-5371. PubMed ID: 34585531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mortality Trends for Veterans Hospitalized With Heart Failure and Pneumonia Using Claims-Based vs Clinical Risk-Adjustment Variables.
    Silva GC; Jiang L; Gutman R; Wu WC; Mor V; Fine MJ; Kressin NR; Trivedi AN
    JAMA Intern Med; 2020 Mar; 180(3):347-355. PubMed ID: 31860015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electronic phenotyping of health outcomes of interest using a linked claims-electronic health record database: Findings from a machine learning pilot project.
    Gibson TB; Nguyen MD; Burrell T; Yoon F; Wong J; Dharmarajan S; Ouellet-Hellstrom R; Hua W; Ma Y; Baro E; Bloemers S; Pack C; Kennedy A; Toh S; Ball R
    J Am Med Inform Assoc; 2021 Jul; 28(7):1507-1517. PubMed ID: 33712852
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning model to predict the risk of 30-day readmissions in patients with heart failure: a retrospective analysis of electronic medical records data.
    Golas SB; Shibahara T; Agboola S; Otaki H; Sato J; Nakae T; Hisamitsu T; Kojima G; Felsted J; Kakarmath S; Kvedar J; Jethwani K
    BMC Med Inform Decis Mak; 2018 Jun; 18(1):44. PubMed ID: 29929496
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 57.