BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 31922607)

  • 1. Ribosome biogenesis and resistance training volume in human skeletal muscle.
    Solsona R; Sanchez AMJ
    J Physiol; 2020 Mar; 598(6):1121-1122. PubMed ID: 31922607
    [No Abstract]   [Full Text] [Related]  

  • 2. Impaired ribosome biogenesis could contribute to anabolic resistance to strength exercise in the elderly.
    Chaillou T
    J Physiol; 2017 Mar; 595(5):1447-1448. PubMed ID: 28105708
    [No Abstract]   [Full Text] [Related]  

  • 3. Progressive resistance-loaded voluntary wheel running increases hypertrophy and differentially affects muscle protein synthesis, ribosome biogenesis, and proteolytic markers in rat muscle.
    Mobley CB; Holland AM; Kephart WC; Mumford PW; Lowery RP; Kavazis AN; Wilson JM; Roberts MD
    J Anim Physiol Anim Nutr (Berl); 2018 Feb; 102(1):317-329. PubMed ID: 28294417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revisiting the roles of protein synthesis during skeletal muscle hypertrophy induced by exercise.
    Figueiredo VC
    Am J Physiol Regul Integr Comp Physiol; 2019 Nov; 317(5):R709-R718. PubMed ID: 31508978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ribosome biogenesis may augment resistance training-induced myofiber hypertrophy and is required for myotube growth in vitro.
    Stec MJ; Kelly NA; Many GM; Windham ST; Tuggle SC; Bamman MM
    Am J Physiol Endocrinol Metab; 2016 Apr; 310(8):E652-E661. PubMed ID: 26860985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribosome biogenesis adaptation in resistance training-induced human skeletal muscle hypertrophy.
    Figueiredo VC; Caldow MK; Massie V; Markworth JF; Cameron-Smith D; Blazevich AJ
    Am J Physiol Endocrinol Metab; 2015 Jul; 309(1):E72-83. PubMed ID: 25968575
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of dietary arachidonic acid supplementation on acute muscle adaptive responses to resistance exercise in trained men: a randomized controlled trial.
    Mitchell CJ; D'Souza RF; Figueiredo VC; Chan A; Aasen K; Durainayagam B; Mitchell S; Sinclair AJ; Egner IM; Raastad T; Cameron-Smith D; Markworth JF
    J Appl Physiol (1985); 2018 Apr; 124(4):1080-1091. PubMed ID: 29389245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of age and resistance loading on skeletal muscle ribosome biogenesis.
    Stec MJ; Mayhew DL; Bamman MM
    J Appl Physiol (1985); 2015 Oct; 119(8):851-7. PubMed ID: 26294750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of Ribosome Biogenesis in Skeletal Muscle Hypertrophy.
    Figueiredo VC; McCarthy JJ
    Physiology (Bethesda); 2019 Jan; 34(1):30-42. PubMed ID: 30540235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise and ribosome biogenesis in skeletal muscle hypertrophy: Impact of genetic and epigenetic factors.
    Solsona R; Sanchez AMJ
    J Physiol; 2021 Aug; 599(16):3803-3805. PubMed ID: 34197648
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparative effects of whey protein versus L-leucine on skeletal muscle protein synthesis and markers of ribosome biogenesis following resistance exercise.
    Mobley CB; Fox CD; Thompson RM; Healy JC; Santucci V; Kephart WC; McCloskey AE; Kim M; Pascoe DD; Martin JS; Moon JR; Young KC; Roberts MD
    Amino Acids; 2016 Mar; 48(3):733-750. PubMed ID: 26507545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced skeletal muscle ribosome biogenesis, yet attenuated mTORC1 and ribosome biogenesis-related signalling, following short-term concurrent versus single-mode resistance training.
    Fyfe JJ; Bishop DJ; Bartlett JD; Hanson ED; Anderson MJ; Garnham AP; Stepto NK
    Sci Rep; 2018 Jan; 8(1):560. PubMed ID: 29330460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarkers associated with low, moderate, and high vastus lateralis muscle hypertrophy following 12 weeks of resistance training.
    Mobley CB; Haun CT; Roberson PA; Mumford PW; Kephart WC; Romero MA; Osburn SC; Vann CG; Young KC; Beck DT; Martin JS; Lockwood CM; Roberts MD
    PLoS One; 2018; 13(4):e0195203. PubMed ID: 29621305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosome accumulation during early phase resistance training in humans.
    Hammarström D; Øfsteng SJ; Jacobsen NB; Flobergseter KB; Rønnestad BR; Ellefsen S
    Acta Physiol (Oxf); 2022 May; 235(1):e13806. PubMed ID: 35213791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. More is more? rDNA gene dosage is correlated with resistance exercise-induced ribosome biogenesis.
    Goodman CA
    J Physiol; 2021 Jul; 599(13):3261-3262. PubMed ID: 34032281
    [No Abstract]   [Full Text] [Related]  

  • 16. Protein Supplementation Augments Muscle Fiber Hypertrophy but Does Not Modulate Satellite Cell Content During Prolonged Resistance-Type Exercise Training in Frail Elderly.
    Dirks ML; Tieland M; Verdijk LB; Losen M; Nilwik R; Mensink M; de Groot LCPGM; van Loon LJC
    J Am Med Dir Assoc; 2017 Jul; 18(7):608-615. PubMed ID: 28377156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Skeletal Muscle Mitochondrial Adaptations Following Resistance Exercise Training.
    Parry HA; Roberts MD; Kavazis AN
    Int J Sports Med; 2020 Jun; 41(6):349-359. PubMed ID: 32162291
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects).
    Phillips SM
    Appl Physiol Nutr Metab; 2009 Jun; 34(3):403-10. PubMed ID: 19448706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of divergent resistance exercise contraction mode and dietary supplementation type on anabolic signalling, muscle protein synthesis and muscle hypertrophy.
    Rahbek SK; Farup J; Møller AB; Vendelbo MH; Holm L; Jessen N; Vissing K
    Amino Acids; 2014 Oct; 46(10):2377-92. PubMed ID: 25005782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-absorptive muscle protein turnover affects resistance training hypertrophy.
    Reidy PT; Borack MS; Markofski MM; Dickinson JM; Fry CS; Deer RR; Volpi E; Rasmussen BB
    Eur J Appl Physiol; 2017 May; 117(5):853-866. PubMed ID: 28280974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.