BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31922627)

  • 1. Ultrasound-Triggered Enzymatic Gelation.
    Nele V; Schutt CE; Wojciechowski JP; Kit-Anan W; Doutch JJ; Armstrong JPK; Stevens MM
    Adv Mater; 2020 Feb; 32(7):e1905914. PubMed ID: 31922627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ formation of silver nanoparticles-contained gelatin-PEG-dopamine hydrogels via enzymatic cross-linking reaction for improved antibacterial activities.
    Pham TN; Jiang YS; Su CF; Jan JS
    Int J Biol Macromol; 2020 Mar; 146():1050-1059. PubMed ID: 31726123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII.
    Sanborn TJ; Messersmith PB; Barron AE
    Biomaterials; 2002 Jul; 23(13):2703-10. PubMed ID: 12059019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue-Penetrating Ultrasound-Triggered Hydrogel for Promoting Microvascular Network Reconstruction.
    Zhao Z; Zhang Y; Meng C; Xie X; Cui W; Zuo K
    Adv Sci (Weinh); 2024 Jun; 11(23):e2401368. PubMed ID: 38600702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of fibrinogen-based hydrogels using phototriggerable diplasmalogen liposomes.
    Zhang ZY; Shum P; Yates M; Messersmith PB; Thompson DH
    Bioconjug Chem; 2002; 13(3):640-6. PubMed ID: 12009956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery.
    Epstein-Barash H; Orbey G; Polat BE; Ewoldt RH; Feshitan J; Langer R; Borden MA; Kohane DS
    Biomaterials; 2010 Jul; 31(19):5208-17. PubMed ID: 20347484
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Triggered release of calcium from lipid vesicles: a bioinspired strategy for rapid gelation of polysaccharide and protein hydrogels.
    Westhaus E; Messersmith PB
    Biomaterials; 2001 Mar; 22(5):453-62. PubMed ID: 11214756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation.
    Jiang Z; Shaha R; McBride R; Jiang K; Tang M; Xu B; Goroncy AK; Frick C; Oakey J
    Biofabrication; 2020 Apr; 12(3):035006. PubMed ID: 32160605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen-bonding-driven spontaneous gelation of water-soluble phospholipid polymers in aqueous medium.
    Kimura M; Fukumoto K; Watanabe J; Ishihara K
    J Biomater Sci Polym Ed; 2004; 15(5):631-44. PubMed ID: 15264664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic control of hydrogel crosslinking via sortase-mediated reversible transpeptidation.
    Arkenberg MR; Moore DM; Lin CC
    Acta Biomater; 2019 Jan; 83():83-95. PubMed ID: 30415064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Injectable hydrogel systems crosslinked by horseradish peroxidase.
    Lee F; Bae KH; Kurisawa M
    Biomed Mater; 2015 Dec; 11(1):014101. PubMed ID: 26694014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
    Ferrara KW; Borden MA; Zhang H
    Acc Chem Res; 2009 Jul; 42(7):881-92. PubMed ID: 19552457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel.
    Song F; Zhang LM
    J Phys Chem B; 2008 Nov; 112(44):13749-55. PubMed ID: 18855437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horseradish peroxidase-catalysed in situ-forming hydrogels for tissue-engineering applications.
    Bae JW; Choi JH; Lee Y; Park KD
    J Tissue Eng Regen Med; 2015 Nov; 9(11):1225-32. PubMed ID: 24916126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlling the kinetics of thiol-maleimide Michael-type addition gelation kinetics for the generation of homogenous poly(ethylene glycol) hydrogels.
    Darling NJ; Hung YS; Sharma S; Segura T
    Biomaterials; 2016 Sep; 101():199-206. PubMed ID: 27289380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rheological Analysis of the Gelation Kinetics of an Enzyme Cross-linked PEG Hydrogel.
    Sun Han Chang R; Lee JC; Pedron S; Harley BAC; Rogers SA
    Biomacromolecules; 2019 Jun; 20(6):2198-2206. PubMed ID: 31046247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release.
    Hou P; Zhang N; Wu R; Xu W; Hou Z
    J Biomater Appl; 2017 Oct; 32(4):511-523. PubMed ID: 28899224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ formation of enzyme-free hydrogels via ferromagnetic microbead-assisted enzymatic cross-linking.
    Bae JW; Kim BY; Lih E; Choi JH; Lee Y; Park KD
    Chem Commun (Camb); 2014 Nov; 50(89):13710-3. PubMed ID: 25247682
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Hydrolytically Degradable Polyethylene Glycol Crosslinkers for Facile Control of Hydrogel Degradation.
    Kroger SM; Hill L; Jain E; Stock A; Bracher PJ; He F; Zustiak SP
    Macromol Biosci; 2020 Oct; 20(10):e2000085. PubMed ID: 32734673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sortase A as a cross-linking enzyme in tissue engineering.
    Broguiere N; Formica FA; Barreto G; Zenobi-Wong M
    Acta Biomater; 2018 Sep; 77():182-190. PubMed ID: 30006315
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.