These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31922630)

  • 1. Photo Cross-Linking Probes Containing ϵ-N-Thioacyllysine and ϵ-N-Acyl-(δ-aza)lysine Residues.
    Baek M; Martín-Gago P; Laursen JS; Madsen JLH; Chakladar S; Olsen CA
    Chemistry; 2020 Mar; 26(17):3862-3869. PubMed ID: 31922630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chiral Posttranslational Modification to Lysine ε-Amino Groups.
    Moreno-Yruela C; Bæk M; Monda F; Olsen CA
    Acc Chem Res; 2022 May; 55(10):1456-1466. PubMed ID: 35500056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Methods for studying human sirtuins with activity-based chemical probes.
    Zheng S; Wohlfahrt J; Cohen I; Cen Y
    Methods Enzymol; 2020; 633():251-269. PubMed ID: 32046849
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the Sensitivity of NAD+-dependent Sirtuin Deacylation Activities to NADH.
    Madsen AS; Andersen C; Daoud M; Anderson KA; Laursen JS; Chakladar S; Huynh FK; Colaço AR; Backos DS; Fristrup P; Hirschey MD; Olsen CA
    J Biol Chem; 2016 Mar; 291(13):7128-41. PubMed ID: 26861872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A succinyl lysine-based photo-cross-linking peptide probe for Sirtuin 5.
    Kalesh KA; Tate EW
    Org Biomol Chem; 2014 Jul; 12(25):4310-3. PubMed ID: 24848608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Sirtuins: Substrate Specificity and Inhibitor Design.
    Rajabi N; Galleano I; Madsen AS; Olsen CA
    Prog Mol Biol Transl Sci; 2018; 154():25-69. PubMed ID: 29413177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases.
    Smith BC; Denu JM
    J Biol Chem; 2007 Dec; 282(51):37256-65. PubMed ID: 17951578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Posttranslational modifications of lysine and evolving role in heart pathologies-recent developments.
    Stastna M; Van Eyk JE
    Proteomics; 2015 Mar; 15(5-6):1164-80. PubMed ID: 25430483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of activity-based probes for the protein deacylase Sirt1.
    Goetz CJ; Sprague DJ; Smith BC
    Bioorg Chem; 2020 Nov; 104():104232. PubMed ID: 32911193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Nε-acetyl-L-homolysine by the Lossen rearrangement and its application for probing deacetylases and binding modules of acetyl-lysine.
    Rehkopf L; Seidel J; Sindlinger J; Wang M; Kirchgäßner S; Schwarzer D
    J Pept Sci; 2023 Apr; 29(4):e3462. PubMed ID: 36416071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Analysis of the Sirt5-Regulated Lysine Succinylation Proteome in Mammalian Cells.
    Chen Y
    Methods Mol Biol; 2016; 1410():23-37. PubMed ID: 26867736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Profiling protein kinases and other ATP binding proteins in Arabidopsis using Acyl-ATP probes.
    Villamor JG; Kaschani F; Colby T; Oeljeklaus J; Zhao D; Kaiser M; Patricelli MP; van der Hoorn RA
    Mol Cell Proteomics; 2013 Sep; 12(9):2481-96. PubMed ID: 23722185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum.
    Trelle MB; Salcedo-Amaya AM; Cohen AM; Stunnenberg HG; Jensen ON
    J Proteome Res; 2009 Jul; 8(7):3439-50. PubMed ID: 19351122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine Acetylation of Proteins and Its Characterization in Human Systems.
    Orren DK; Machwe A
    Methods Mol Biol; 2019; 1983():107-130. PubMed ID: 31087295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photo-lysine captures proteins that bind lysine post-translational modifications.
    Yang T; Li XM; Bao X; Fung YM; Li XD
    Nat Chem Biol; 2016 Feb; 12(2):70-2. PubMed ID: 26689789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Advances in applications of activity-based chemical probes in the characterization of amino acid reactivities].
    Li J; Wang G; Ye M; Qin H
    Se Pu; 2023 Jan; 41(1):14-23. PubMed ID: 36633073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Approach to profile proteins that recognize post-translationally modified histone "tails".
    Li X; Kapoor TM
    J Am Chem Soc; 2010 Mar; 132(8):2504-5. PubMed ID: 20141135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular Affinity Labeling of Histone Peptides Containing Trimethyllysine and Its Application to Histone Deacetylase Assays.
    Gober IN; Waters ML
    J Am Chem Soc; 2016 Aug; 138(30):9452-9. PubMed ID: 27387477
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetically Encoded Noncanonical Amino Acids in Proteins to Investigate Lysine Benzoylation.
    Guo AD; Chen XH
    Methods Mol Biol; 2023; 2676():131-146. PubMed ID: 37277629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous Affinity Enrichment of Two Post-Translational Modifications for Quantification and Site Localization.
    Xie X; Shah S; Holtz A; Rose J; Basisty N; Schilling B
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32176209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.