These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 31922784)

  • 1. Observations of Electromagnetic Electron Holes and Evidence of Cherenkov Whistler Emission.
    Steinvall K; Khotyaintsev YV; Graham DB; Vaivads A; Le Contel O; Russell CT
    Phys Rev Lett; 2019 Dec; 123(25):255101. PubMed ID: 31922784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterstreaming beams and flat-top electron distributions observed with Langmuir, Whistler, and compressional Alfvén waves in earth's magnetic tail.
    Teste A; Parks GK
    Phys Rev Lett; 2009 Feb; 102(7):075003. PubMed ID: 19257680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Čerenkov emission of quasiparallel whistlers by fast electron phase-space holes during magnetic reconnection.
    Goldman MV; Newman DL; Lapenta G; Andersson L; Gosling JT; Eriksson S; Markidis S; Eastwood JP; Ergun R
    Phys Rev Lett; 2014 Apr; 112(14):145002. PubMed ID: 24765977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks.
    Spong DA; Heidbrink WW; Paz-Soldan C; Du XD; Thome KE; Van Zeeland MA; Collins C; Lvovskiy A; Moyer RA; Austin ME; Brennan DP; Liu C; Jaeger EF; Lau C
    Phys Rev Lett; 2018 Apr; 120(15):155002. PubMed ID: 29756886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anisotropy of solar wind turbulence between ion and electron scales.
    Chen CH; Horbury TS; Schekochihin AA; Wicks RT; Alexandrova O; Mitchell J
    Phys Rev Lett; 2010 Jun; 104(25):255002. PubMed ID: 20867388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coupling between whistler waves and ion-scale solitary waves: cluster measurements in the magnetotail during a substorm.
    Tenerani A; Le Contel O; Califano F; Pegoraro F; Robert P; Cornilleau-Wehrlin N; Sauvaud JA
    Phys Rev Lett; 2012 Oct; 109(15):155005. PubMed ID: 23102320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Whistler modes with wave magnetic fields exceeding the ambient field.
    Stenzel RL; Urrutia JM; Strohmaier KD
    Phys Rev Lett; 2006 Mar; 96(9):095004. PubMed ID: 16606272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse duration constraint of whistler waves in magnetized dense plasma.
    Hata M; Sano T; Sentoku Y; Nagatomo H; Sakagami H
    Phys Rev E; 2021 Sep; 104(3-2):035205. PubMed ID: 34654167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast wave-particle energy transfer in the collapse of standing whistler waves.
    Sano T; Hata M; Kawahito D; Mima K; Sentoku Y
    Phys Rev E; 2019 Nov; 100(5-1):053205. PubMed ID: 31869898
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic Steepening of Whistler Waves.
    Vasko IY; Agapitov OV; Mozer FS; Bonnell JW; Artemyev AV; Krasnoselskikh VV; Tong Y
    Phys Rev Lett; 2018 May; 120(19):195101. PubMed ID: 29799234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent Cherenkov-Cyclotron Radiation Excited by an Electron Beam in a Metamaterial Waveguide.
    Hummelt JS; Lu X; Xu H; Mastovsky I; Shapiro MA; Temkin RJ
    Phys Rev Lett; 2016 Dec; 117(23):237701. PubMed ID: 27982613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cherenkov radiation of electromagnetic waves by electron beams in the absence of an external magnetic field.
    Nusinovich GS; Bliokh YP
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Aug; 62(2 Pt B):2657-66. PubMed ID: 11088745
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New features of electron phase space holes observed by the THEMIS mission.
    Andersson L; Ergun RE; Tao J; Roux A; Lecontel O; Angelopoulos V; Bonnell J; McFadden JP; Larson DE; Eriksson S; Johansson T; Cully CM; Newman DL; Goldman MV; Glassmeier KH; Baumjohann W
    Phys Rev Lett; 2009 Jun; 102(22):225004. PubMed ID: 19658872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-frequency whistler waves excited by relativistic laser pulses.
    Song HH; Wang WM; Wang JQ; Li YT; Zhang J
    Phys Rev E; 2020 Nov; 102(5-1):053204. PubMed ID: 33327142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ferrite based antennae for launching Alfvén waves.
    Gekelman W; Pribyl P; Vincena S; Tang SW; Papadopoulos K
    Rev Sci Instrum; 2019 Aug; 90(8):083505. PubMed ID: 31472640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical Study of Whistler-Mode Waves and Expected Pitch Angle Diffusion Rates During Dispersionless Electron Injections.
    Ghaffari R; Cully CM; Gabrielse C
    Geophys Res Lett; 2021 Sep; 48(17):e2021GL094085. PubMed ID: 35864943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations.
    Fu X; Cowee MM; Friedel RH; Funsten HO; Gary SP; Hospodarsky GB; Kletzing C; Kurth W; Larsen BA; Liu K; MacDonald EA; Min K; Reeves GD; Skoug RM; Winske D
    J Geophys Res Space Phys; 2014 Oct; 119(10):8288-8298. PubMed ID: 26167433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of Kinetic Instability in Runaway-Electron Avalanches and Elevated Critical Electric Fields.
    Liu C; Hirvijoki E; Fu GY; Brennan DP; Bhattacharjee A; Paz-Soldan C
    Phys Rev Lett; 2018 Jun; 120(26):265001. PubMed ID: 30004735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bidirectional energy cascades and the origin of kinetic Alfvénic and whistler turbulence in the solar wind.
    Che H; Goldstein ML; Viñas AF
    Phys Rev Lett; 2014 Feb; 112(6):061101. PubMed ID: 24580684
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasma jet braking: energy dissipation and nonadiabatic electrons.
    Khotyaintsev YV; Cully CM; Vaivads A; André M; Owen CJ
    Phys Rev Lett; 2011 Apr; 106(16):165001. PubMed ID: 21599373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.