These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31922817)

  • 1. Convergence of Nonperturbative Approximations to the Renormalization Group.
    Balog I; Chaté H; Delamotte B; Marohnić M; Wschebor N
    Phys Rev Lett; 2019 Dec; 123(24):240604. PubMed ID: 31922817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformal invariance in the nonperturbative renormalization group: A rationale for choosing the regulator.
    Balog I; De Polsi G; Tissier M; Wschebor N
    Phys Rev E; 2020 Jun; 101(6-1):062146. PubMed ID: 32688494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision calculation of critical exponents in the O(N) universality classes with the nonperturbative renormalization group.
    De Polsi G; Balog I; Tissier M; Wschebor N
    Phys Rev E; 2020 Apr; 101(4-1):042113. PubMed ID: 32422800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonperturbative renormalization group preserving full-momentum dependence: implementation and quantitative evaluation.
    Benitez F; Blaizot JP; Chaté H; Delamotte B; Méndez-Galain R; Wschebor N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026707. PubMed ID: 22463357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonperturbative renormalization group for the Kardar-Parisi-Zhang equation: general framework and first applications.
    Canet L; Chaté H; Delamotte B; Wschebor N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061128. PubMed ID: 22304061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulator dependence in the functional renormalization group: A quantitative explanation.
    De Polsi G; Wschebor N
    Phys Rev E; 2022 Aug; 106(2-1):024111. PubMed ID: 36109989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonperturbative renormalization group and momentum dependence of n-point functions. I.
    Blaizot JP; Méndez-Galain R; Wschebor N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Nov; 74(5 Pt 1):051116. PubMed ID: 17279886
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ordered phase of the O(N) model within the nonperturbative renormalization group.
    Peláez M; Wschebor N
    Phys Rev E; 2016 Oct; 94(4-1):042136. PubMed ID: 27841563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of the anomalous exponents in the rapid-change model of passive scalar advection to order epsilon(3).
    Adzhemyan LT; Antonov NV; Barinov VA; Kabrits YS; Vasil'ev AN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 2):056306. PubMed ID: 11736093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-space renormalization group for the transverse-field Ising model in two and three dimensions.
    Miyazaki R; Nishimori H; Ortiz G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051103. PubMed ID: 21728486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoration of dimensional reduction in the random-field Ising model at five dimensions.
    Fytas NG; Martín-Mayor V; Picco M; Sourlas N
    Phys Rev E; 2017 Apr; 95(4-1):042117. PubMed ID: 28505873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effective-average-action-based approach to correlation functions at finite momenta.
    Hasselmann N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041118. PubMed ID: 23214540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Approach to the lower critical dimension of the φ^{4} theory in the derivative expansion of the functional renormalization group.
    Farkaš LN; Tarjus G; Balog I
    Phys Rev E; 2023 Nov; 108(5-1):054107. PubMed ID: 38115505
    [TBL] [Abstract][Full Text] [Related]  

  • 14. q-state Potts model from the nonperturbative renormalization group.
    Sánchez-Villalobos CA; Delamotte B; Wschebor N
    Phys Rev E; 2023 Dec; 108(6-1):064120. PubMed ID: 38243545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition.
    Jakubczyk P; Dupuis N; Delamotte B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):062105. PubMed ID: 25615042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model.
    Bulla R; Tong NH; Vojta M
    Phys Rev Lett; 2003 Oct; 91(17):170601. PubMed ID: 14611329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformal invariance and composite operators: A strategy for improving the derivative expansion of the nonperturbative renormalization group.
    Delamotte B; De Polsi G; Tissier M; Wschebor N
    Phys Rev E; 2024 Jun; 109(6-1):064152. PubMed ID: 39020923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonperturbative renormalization group for the stationary Kardar-Parisi-Zhang equation: scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions.
    Kloss T; Canet L; Wschebor N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 1):051124. PubMed ID: 23214755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamical real-space renormalization group calculations with a highly connected clustering scheme on disordered networks.
    Balcan D; Erzan A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Feb; 71(2 Pt 2):026130. PubMed ID: 15783401
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incompleteness of the large-N analysis of the O(N) models: Nonperturbative cuspy fixed points and their nontrivial homotopy at finite N.
    Yabunaka S; Fleming C; Delamotte B
    Phys Rev E; 2022 Nov; 106(5-1):054105. PubMed ID: 36559345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.