These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 31922827)

  • 1. Ultrastrong Parametric Coupling between a Superconducting Cavity and a Mechanical Resonator.
    Peterson GA; Kotler S; Lecocq F; Cicak K; Jin XY; Simmonds RW; Aumentado J; Teufel JD
    Phys Rev Lett; 2019 Dec; 123(24):247701. PubMed ID: 31922827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantum-limited amplification and parametric instability in the reversed dissipation regime of cavity optomechanics.
    Nunnenkamp A; Sudhir V; Feofanov AK; Roulet A; Kippenberg TJ
    Phys Rev Lett; 2014 Jul; 113(2):023604. PubMed ID: 25062181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Instabilities near Ultrastrong Coupling in a Microwave Optomechanical Cavity.
    Das SR; Majumder S; Sahu SK; Singhal U; Bera T; Singh V
    Phys Rev Lett; 2023 Aug; 131(6):067001. PubMed ID: 37625056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optomechanical coupling between a multilayer graphene mechanical resonator and a superconducting microwave cavity.
    Singh V; Bosman SJ; Schneider BH; Blanter YM; Castellanos-Gomez A; Steele GA
    Nat Nanotechnol; 2014 Oct; 9(10):820-4. PubMed ID: 25150717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode.
    Verhagen E; Deléglise S; Weis S; Schliesser A; Kippenberg TJ
    Nature; 2012 Feb; 482(7383):63-7. PubMed ID: 22297970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable quantum memory in the ultrastrong coupling regime.
    Kyaw TH; Felicetti S; Romero G; Solano E; Kwek LC
    Sci Rep; 2015 Mar; 5():8621. PubMed ID: 25727251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Cavity Quantum Electrodynamics via Antisqueezing: Synthetic Ultrastrong Coupling.
    Leroux C; Govia LCG; Clerk AA
    Phys Rev Lett; 2018 Mar; 120(9):093602. PubMed ID: 29547301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimode optomechanical system in the quantum regime.
    Nielsen WH; Tsaturyan Y; Møller CB; Polzik ES; Schliesser A
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):62-66. PubMed ID: 27999182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissipation-driven entanglement between two microwave fields in a four-mode hybrid cavity optomechanical system.
    Liao CG; Shang X; Xie H; Lin XM
    Opt Express; 2022 Mar; 30(7):10306-10316. PubMed ID: 35473001
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cavity electromechanics with parametric mechanical driving.
    Bothner D; Yanai S; Iniguez-Rabago A; Yuan M; Blanter YM; Steele GA
    Nat Commun; 2020 Mar; 11(1):1589. PubMed ID: 32221296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity.
    Yuan M; Singh V; Blanter YM; Steele GA
    Nat Commun; 2015 Oct; 6():8491. PubMed ID: 26450772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optomechanical dark mode.
    Dong C; Fiore V; Kuzyk MC; Wang H
    Science; 2012 Dec; 338(6114):1609-13. PubMed ID: 23160956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Circuit cavity electromechanics in the strong-coupling regime.
    Teufel JD; Li D; Allman MS; Cicak K; Sirois AJ; Whittaker JD; Simmonds RW
    Nature; 2011 Mar; 471(7337):204-8. PubMed ID: 21390127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature-resistant generation of robust entanglement with blue-detuning driving and mechanical gain.
    Wang T; Wang L; Liu YM; Bai CH; Wang DY; Wang HF; Zhang S
    Opt Express; 2019 Oct; 27(21):29581-29593. PubMed ID: 31684217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photon-assisted entanglement and squeezing generation and decoherence suppression via a quadratic optomechanical coupling.
    Zhang Z; Wang X
    Opt Express; 2020 Feb; 28(3):2732-2743. PubMed ID: 32121955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multimode Strong Coupling in Superconducting Cavity Piezoelectromechanics.
    Han X; Zou CL; Tang HX
    Phys Rev Lett; 2016 Sep; 117(12):123603. PubMed ID: 27689272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and detection of a mechanical resonator near the ground state of motion.
    Rocheleau T; Ndukum T; Macklin C; Hertzberg JB; Clerk AA; Schwab KC
    Nature; 2010 Jan; 463(7277):72-5. PubMed ID: 20010604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Topological lattices realized in superconducting circuit optomechanics.
    Youssefi A; Kono S; Bancora A; Chegnizadeh M; Pan J; Vovk T; Kippenberg TJ
    Nature; 2022 Dec; 612(7941):666-672. PubMed ID: 36543952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastrong coupling probed by Coherent Population Transfer.
    Falci G; Ridolfo A; Di Stefano PG; Paladino E
    Sci Rep; 2019 Jun; 9(1):9249. PubMed ID: 31239455
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.