These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31922844)

  • 41. Density inversion in rapid granular flows: the supported regime.
    Taberlet N; Richard P; Jenkins JT; Delannay R
    Eur Phys J E Soft Matter; 2007 Jan; 22(1):17-24. PubMed ID: 17318294
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Surface stability of granular systems under horizontal and vertical vibration: the applicability of a coefficient of friction.
    King PJ; Swift MR; Benedict KA; Routledge A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt B):6982-8. PubMed ID: 11102054
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Contact dynamics in a gently vibrated granular pile.
    Kabla A; Debrégeas G
    Phys Rev Lett; 2004 Jan; 92(3):035501. PubMed ID: 14753883
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Breakdown of avalanche critical behaviour in polycrystalline plasticity.
    Richeton T; Weiss J; Louchet F
    Nat Mater; 2005 Jun; 4(6):465-9. PubMed ID: 15880114
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Approach to quantum Kramers' equation and barrier crossing dynamics.
    Banerjee D; Bag BC; Banik SK; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021109. PubMed ID: 11863505
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Analysis of the evolution of granular stress-strain and voidage states based on DEM simulations.
    Tüzün U; Baxter J; Heyes DM
    Philos Trans A Math Phys Eng Sci; 2004 Sep; 362(1822):1931-51. PubMed ID: 15306423
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum.
    Brewster R; Grest GS; Levine AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011305. PubMed ID: 19257028
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relation between self-organized criticality and grain aspect ratio in granular piles.
    Denisov DV; Villanueva YY; Lőrincz KA; May S; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051309. PubMed ID: 23004752
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Start and stop of an avalanche in a granular medium subjected to an inner water flow.
    Philippe P; Richard T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041306. PubMed ID: 18517609
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simple relations between mean passage times and Kramers' stationary rate.
    Boilley D; Jurado B; Schmitt C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 2):056129. PubMed ID: 15600714
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Collapse dynamics of dry granular columns: From free-fall to quasistatic flow.
    Sarlin W; Morize C; Sauret A; Gondret P
    Phys Rev E; 2021 Dec; 104(6-1):064904. PubMed ID: 35030923
    [TBL] [Abstract][Full Text] [Related]  

  • 52. 3D scans, angles of repose and bulk densities of 108 bulk material heaps.
    Rackl M; Grötsch FE
    Sci Data; 2018 May; 5():180102. PubMed ID: 29809173
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reaction rate theory: what it was, where is it today, and where is it going?
    Pollak E; Talkner P
    Chaos; 2005 Jun; 15(2):26116. PubMed ID: 16035918
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Photoelastic study of dense granular free-surface flows.
    Thomas AL; Vriend NM
    Phys Rev E; 2019 Jul; 100(1-1):012902. PubMed ID: 31499875
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Simulation of a Casimir-like effect in a granular pile with avalanches.
    Denisov DV; Villanueva YY; Wijngaarden RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061301. PubMed ID: 21797352
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time-varying force from dense granular avalanches on a wall.
    Chanut B; Faug T; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):041302. PubMed ID: 21230268
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Relaxation-type nonlocal inertial-number rheology for dry granular flows.
    Lee KL; Yang FL
    Phys Rev E; 2017 Dec; 96(6-1):062909. PubMed ID: 29347369
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hysteretic transition between avalanches and continuous flow in rotated granular systems.
    Linz SJ; Hager W; Hanggi P
    Chaos; 1999 Sep; 9(3):649-653. PubMed ID: 12779860
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Erosion and deposition processes in surface granular flows.
    Trinh T; Boltenhagen P; Delannay R; Valance A
    Phys Rev E; 2017 Oct; 96(4-1):042904. PubMed ID: 29347464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Long-range effects in granular avalanching.
    Gleiser PM; Cannas SA; Tamarit FA; Zheng B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 1):042301. PubMed ID: 11308889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.