These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31922869)

  • 1. Exploiting the Causal Tensor Network Structure of Quantum Processes to Efficiently Simulate Non-Markovian Path Integrals.
    Jørgensen MR; Pollock FA
    Phys Rev Lett; 2019 Dec; 123(24):240602. PubMed ID: 31922869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multisite decomposition of the tensor network path integrals.
    Bose A; Walters PL
    J Chem Phys; 2022 Jan; 156(2):024101. PubMed ID: 35032978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Grassmann time-evolving matrix product operators: An efficient numerical approach for fermionic path integral simulations.
    Xu X; Guo C; Chen R
    J Chem Phys; 2024 Oct; 161(15):. PubMed ID: 39404199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient non-Markovian quantum dynamics using time-evolving matrix product operators.
    Strathearn A; Kirton P; Kilda D; Keeling J; Lovett BW
    Nat Commun; 2018 Aug; 9(1):3322. PubMed ID: 30127490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OQuPy: A Python package to efficiently simulate non-Markovian open quantum systems with process tensors.
    Fux GE; Fowler-Wright P; Beckles J; Butler EP; Eastham PR; Gribben D; Keeling J; Kilda D; Kirton P; Lawrence EDC; Lovett BW; O'Neill E; Strathearn A; de Wit R
    J Chem Phys; 2024 Sep; 161(12):. PubMed ID: 39315878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constructing tensor network influence functionals for general quantum dynamics.
    Ye E; Chan GK
    J Chem Phys; 2021 Jul; 155(4):044104. PubMed ID: 34340377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal tree tensor network operators for tensor network simulations: Applications to open quantum systems.
    Li W; Ren J; Yang H; Wang H; Shuai Z
    J Chem Phys; 2024 Aug; 161(5):. PubMed ID: 39105557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic simulation of dissipation and non-Markovian effects in open quantum systems.
    Lacroix D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041126. PubMed ID: 18517597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum correlation functions through tensor network path integral.
    Bose A
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38051096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced TEMPO Algorithm for Quantum Path Integrals with Off-Diagonal System-Bath Coupling: Applications to Photonic Quantum Networks.
    Richter M; Hughes S
    Phys Rev Lett; 2022 Apr; 128(16):167403. PubMed ID: 35522504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ACE: A general-purpose non-Markovian open quantum systems simulation toolkit based on process tensors.
    Cygorek M; Gauger EM
    J Chem Phys; 2024 Aug; 161(7):. PubMed ID: 39158046
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digital Quantum Simulation of the Spin-Boson Model under Markovian Open-System Dynamics.
    Burger A; Kwek LC; Poletti D
    Entropy (Basel); 2022 Dec; 24(12):. PubMed ID: 36554171
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Verifying Random Quantum Circuits with Arbitrary Geometry Using Tensor Network States Algorithm.
    Guo C; Zhao Y; Huang HL
    Phys Rev Lett; 2021 Feb; 126(7):070502. PubMed ID: 33666457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic Representation of Non-Markovian Fermionic Quantum Dissipation.
    Han L; Chernyak V; Yan YA; Zheng X; Yan Y
    Phys Rev Lett; 2019 Aug; 123(5):050601. PubMed ID: 31491295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Open Quantum System Dynamics from Infinite Tensor Network Contraction.
    Link V; Tu HH; Strunz WT
    Phys Rev Lett; 2024 May; 132(20):200403. PubMed ID: 38829084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Non-Markovian dynamical maps: numerical processing of open quantum trajectories.
    Cerrillo J; Cao J
    Phys Rev Lett; 2014 Mar; 112(11):110401. PubMed ID: 24702332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of Spin Chains with Off-Diagonal Coupling Using the Inchworm Method.
    Sun Y; Wang G; Cai Z
    J Chem Theory Comput; 2024 Nov; 20(21):9321-9338. PubMed ID: 39423134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Equilibrium states of open quantum systems in the strong coupling regime.
    Subaşı Y; Fleming CH; Taylor JM; Hu BL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061132. PubMed ID: 23367918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic Feshbach Projection for the Dynamics of Open Quantum Systems.
    Link V; Strunz WT
    Phys Rev Lett; 2017 Nov; 119(18):180401. PubMed ID: 29219600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Matrix-Product States for Open Quantum Many-Body Systems: Efficient Algorithms for Markovian and Non-Markovian Time-Evolution.
    Finsterhölzl R; Katzer M; Knorr A; Carmele A
    Entropy (Basel); 2020 Sep; 22(9):. PubMed ID: 33286753
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.