These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 31923516)
1. Fabrication and in-vitro biocompatibility of freeze-dried CTS-nHA and CTS-nBG scaffolds for bone regeneration applications. Kumar P; Saini M; Dehiya BS; Umar A; Sindhu A; Mohammed H; Al-Hadeethi Y; Guo Z Int J Biol Macromol; 2020 Apr; 149():1-10. PubMed ID: 31923516 [TBL] [Abstract][Full Text] [Related]
2. Ibuprofen-Loaded CTS/nHA/nBG Scaffolds for the Applications of Hard Tissue Engineering. Kumar P; Dehiya BS; Sindhu A Iran Biomed J; 2019 May; 23(3):190-9. PubMed ID: 30266067 [TBL] [Abstract][Full Text] [Related]
3. Preparation and characterization of chitosan-natural nano hydroxyapatite-fucoidan nanocomposites for bone tissue engineering. Lowe B; Venkatesan J; Anil S; Shim MS; Kim SK Int J Biol Macromol; 2016 Dec; 93(Pt B):1479-1487. PubMed ID: 26921504 [TBL] [Abstract][Full Text] [Related]
4. Injectable porous nano-hydroxyapatite/chitosan/tripolyphosphate scaffolds with improved compressive strength for bone regeneration. Uswatta SP; Okeke IU; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():505-12. PubMed ID: 27612741 [TBL] [Abstract][Full Text] [Related]
5. Preparation and bioactive properties of novel bone-repair bionanocomposites based on hydroxyapatite and bioactive glass nanoparticles. Valenzuela F; Covarrubias C; Martínez C; Smith P; Díaz-Dosque M; Yazdani-Pedram M J Biomed Mater Res B Appl Biomater; 2012 Aug; 100(6):1672-82. PubMed ID: 22707209 [TBL] [Abstract][Full Text] [Related]
6. Generation of graphene oxide and nano-bioglass based scaffold for bone tissue regeneration. Kumari S; Singh D; Srivastava P; Singh BN; Mishra A Biomed Mater; 2022 Sep; 17(6):. PubMed ID: 36113451 [TBL] [Abstract][Full Text] [Related]
7. Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically mineralized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations. El-Fiqi A; Kim JH; Kim HW Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110660. PubMed ID: 32204088 [TBL] [Abstract][Full Text] [Related]
8. Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration. Gaihre B; Jayasuriya AC Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():330-339. PubMed ID: 30033262 [TBL] [Abstract][Full Text] [Related]
9. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. Dumont VC; Mansur HS; Mansur AA; Carvalho SM; Capanema NS; Barrioni BR Int J Biol Macromol; 2016 Dec; 93(Pt B):1465-1478. PubMed ID: 27086294 [TBL] [Abstract][Full Text] [Related]
10. Electrospun polycaprolactone/hydroxyapatite/ZnO nanofibers as potential biomaterials for bone tissue regeneration. Shitole AA; Raut PW; Sharma N; Giram P; Khandwekar AP; Garnaik B J Mater Sci Mater Med; 2019 Apr; 30(5):51. PubMed ID: 31011810 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the effects of nano-TiO2 on bioactivity and mechanical properties of nano bioglass-P3HB composite scaffold for bone tissue engineering. Bakhtiyari SS; Karbasi S; Monshi A; Montazeri M J Mater Sci Mater Med; 2016 Jan; 27(1):2. PubMed ID: 26610925 [TBL] [Abstract][Full Text] [Related]
12. Self-assembling peptide and nHA/CTS composite scaffolds promote bone regeneration through increasing seed cell adhesion. Zhang Z; Wu G; Cao Y; Liu C; Jin Y; Wang Y; Yang L; Guo J; Zhu L Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():445-454. PubMed ID: 30274077 [TBL] [Abstract][Full Text] [Related]
13. Investigating the mechanical, physiochemical and osteogenic properties in gelatin-chitosan-bioactive nanoceramic composite scaffolds for bone tissue regeneration: In vitro and in vivo. Dasgupta S; Maji K; Nandi SK Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():713-728. PubMed ID: 30423758 [TBL] [Abstract][Full Text] [Related]
14. Chitosan and carboxymethyl-chitosan capping ligands: Effects on the nucleation and growth of hydroxyapatite nanoparticles for producing biocomposite membranes. Dumont VC; Mansur AAP; Carvalho SM; Medeiros Borsagli FGL; Pereira MM; Mansur HS Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():265-277. PubMed ID: 26652373 [TBL] [Abstract][Full Text] [Related]
15. Improvement of physico-chemical properties of dextran-chitosan composite scaffolds by addition of nano-hydroxyapatite. El-Meliegy E; Abu-Elsaad NI; El-Kady AM; Ibrahim MA Sci Rep; 2018 Aug; 8(1):12180. PubMed ID: 30111828 [TBL] [Abstract][Full Text] [Related]
17. Effect of nano-hydroxyapatite coating on the osteoinductivity of porous biphasic calcium phosphate ceramics. Hu J; Zhou Y; Huang L; Liu J; Lu H BMC Musculoskelet Disord; 2014 Apr; 15():114. PubMed ID: 24690170 [TBL] [Abstract][Full Text] [Related]
18. Design and evaluation of chitosan/chondroitin sulfate/nano-bioglass based composite scaffold for bone tissue engineering. Singh BN; Veeresh V; Mallick SP; Jain Y; Sinha S; Rastogi A; Srivastava P Int J Biol Macromol; 2019 Jul; 133():817-830. PubMed ID: 31002908 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and in vitro biocompatibility of biomorphic PLGA/nHA composite scaffolds for bone tissue engineering. Qian J; Xu W; Yong X; Jin X; Zhang W Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():95-101. PubMed ID: 24433891 [TBL] [Abstract][Full Text] [Related]
20. Development of nanocomposite scaffolds based on TiO Abd-Khorsand S; Saber-Samandari S; Saber-Samandari S Int J Biol Macromol; 2017 Aug; 101():51-58. PubMed ID: 28315764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]