These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31923826)

  • 1. Highly stable and efficient electrorheological suspensions with hydrophobic interaction.
    Liang Y; Yuan X; Wang L; Zhou X; Ren X; Huang Y; Zhang M; Wu J; Wen W
    J Colloid Interface Sci; 2020 Mar; 564():381-391. PubMed ID: 31923826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicone-grafted carbonaceous nanotubes with enhanced dispersion stability and electrorheological efficiency.
    Yin J; Wang X; Zhao X
    Nanotechnology; 2015 Feb; 26(6):065704. PubMed ID: 25597819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrorheological suspensions of laponite in oil: rheometry studies.
    Parmar KP; Méheust Y; Schjelderupsen B; Fossum JO
    Langmuir; 2008 Mar; 24(5):1814-22. PubMed ID: 18215081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and stable electrorheological fluids based on chestnut-like cobalt hydroxide coupled with surface-functionalized carbon dots.
    Liang Y; Liu Y; Zhou Y; Shi Q; Zhang M; Li Y; Wen W; Feng L; Wu J
    Soft Matter; 2022 May; 18(20):3845-3855. PubMed ID: 35416233
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced electrorheological activity of porous chitosan particles.
    Kuznetsov NM; Zagoskin YD; Vdovichenko AY; Bakirov AV; Kamyshinsky RA; Istomina AP; Grigoriev TE; Chvalun SN
    Carbohydr Polym; 2021 Mar; 256():117530. PubMed ID: 33483048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sedimentation behaviour in electrorheological fluids based on suspensions of zeolite particles in silicone oil.
    Prekas K; Shah T; Soin N; Rangoussi M; Vassiliadis S; Siores E
    J Colloid Interface Sci; 2013 Jul; 401():58-64. PubMed ID: 23623409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of hydrophilicity of polyaniline particles on their electrorheology: steady flow and dynamic behaviour.
    Stěnička M; Pavlínek V; Sáha P; Blinova NV; Stejskal J; Quadrat O
    J Colloid Interface Sci; 2010 Jun; 346(1):236-40. PubMed ID: 20227708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of liquid phase on nanoparticle-based giant electrorheological fluid.
    Gong X; Wu J; Huang X; Wen W; Sheng P
    Nanotechnology; 2008 Apr; 19(16):165602. PubMed ID: 21825646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Stimuli-Responsive Electrorheological Property of Poly(ionic liquid)s-Capsulated Polyaniline Particles.
    Zheng C; Dong Y; Liu Y; Zhao X; Yin J
    Polymers (Basel); 2017 Aug; 9(9):. PubMed ID: 30965690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of surface properties on the electrorheological response of hematite/silicone oil dispersions.
    Erol O; Ramos-Tejada MDM; Unal HI; Delgado ÁV
    J Colloid Interface Sci; 2013 Feb; 392():75-82. PubMed ID: 23116854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dispersion Stability and Electrorheological Properties of Polyaniline Particle Suspensions Stabilized by Poly(vinyl methyl ether).
    Chin BD; Park OO
    J Colloid Interface Sci; 2001 Feb; 234(2):344-350. PubMed ID: 11161520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrorheological Fluids with High Shear Stress Based on Wrinkly Tin Titanyl Oxalate.
    Wu J; Zhang L; Xin X; Zhang Y; Wang H; Sun A; Cheng Y; Chen X; Xu G
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6785-6792. PubMed ID: 29388421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach of enhancing the shear stress of electrorheological fluids of montmorillonite nanocomposite by emulsion intercalation of poly-N-methaniline.
    Lu J; Zhao X
    J Colloid Interface Sci; 2004 May; 273(2):651-7. PubMed ID: 15082406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell-structured monodisperse copolymer/silica particle suspension and its electrorheological response.
    Liu YD; Quan X; Hwang B; Kwon YK; Choi HJ
    Langmuir; 2014 Feb; 30(7):1729-34. PubMed ID: 24512519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-Switched Positive/Negative Electrorheological Effect in Tungsten Oxide Suspensions.
    Agafonov AV; Kraev AS; Kusova TV; Evdokimova OL; Ivanova OS; Baranchikov AE; Shekunova TO; Kozyukhin SA
    Molecules; 2019 Sep; 24(18):. PubMed ID: 31540041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorheological properties of polyaniline suspensions: field-induced liquid to solid transition and residual gel structure.
    Hiamtup P; Sirivat A; Jamieson AM
    J Colloid Interface Sci; 2006 Mar; 295(1):270-8. PubMed ID: 16168424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Dielectric Polarization Rate Difference of Filler and Matrix on the Electrorheological Responses of Poly(ionic liquid)/Polyaniline Composite Particles.
    Zheng C; Lei Q; Zhao J; Zhao X; Yin J
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32235757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrorheological Effect in Suspension Composed of Starch Powder and Silicone Oil.
    Negita K; Itou H; Yakou T
    J Colloid Interface Sci; 1999 Jan; 209(1):251-254. PubMed ID: 9878161
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation.
    Danov KD; Georgiev MT; Kralchevsky PA; Radulova GM; Gurkov TD; Stoyanov SD; Pelan EG
    Adv Colloid Interface Sci; 2018 Jan; 251():80-96. PubMed ID: 29174116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Negative electrorheological behavior in suspensions of inorganic particles.
    Ramos-Tejada MM; Arroyo FJ; Delgado AV
    Langmuir; 2010 Nov; 26(22):16833-40. PubMed ID: 20939556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.