These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 31923957)
1. Rapid fabrication and screening of tailored functional 3D biomaterials. Conde-González A; Dutta D; Wallace R; Callanan A; Bradley M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110489. PubMed ID: 31923957 [TBL] [Abstract][Full Text] [Related]
2. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
3. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering. Wang MO; Vorwald CE; Dreher ML; Mott EJ; Cheng MH; Cinar A; Mehdizadeh H; Somo S; Dean D; Brey EM; Fisher JP Adv Mater; 2015 Jan; 27(1):138-44. PubMed ID: 25387454 [TBL] [Abstract][Full Text] [Related]
4. Fabrication and Tang X; Qin Y; Xu X; Guo D; Ye W; Wu W; Li R Biomed Res Int; 2019; 2019():2076138. PubMed ID: 31815125 [TBL] [Abstract][Full Text] [Related]
5. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying. Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
7. Rapid fabrication and screening of tailored functional 3D biomaterials: Validation in bone tissue repair - Part II. Conde-González A; Glinka M; Dutta D; Wallace R; Callanan A; Oreffo ROC; Bradley M Biomater Adv; 2023 Feb; 145():213250. PubMed ID: 36563509 [TBL] [Abstract][Full Text] [Related]
8. Rapid Fabrication of Anatomically-Shaped Bone Scaffolds Using Indirect 3D Printing and Perfusion Techniques. Grottkau BE; Hui Z; Yao Y; Pang Y Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31906530 [TBL] [Abstract][Full Text] [Related]
9. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering. Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325 [TBL] [Abstract][Full Text] [Related]
10. [Mechanical properties of polylactic acid/beta-tricalcium phosphate composite scaffold with double channels based on three-dimensional printing technique]. Lian Q; Zhuang P; Li C; Jin Z; Li D Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):309-13. PubMed ID: 24844010 [TBL] [Abstract][Full Text] [Related]
11. Fabrication, multi-scale characterization and in-vitro evaluation of porous hybrid bioactive glass polymer-coated scaffolds for bone tissue engineering. Chlanda A; Oberbek P; Heljak M; Kijeńska-Gawrońska E; Bolek T; Gloc M; John Ł; Janeta M; Woźniak MJ Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():516-523. PubMed ID: 30423736 [TBL] [Abstract][Full Text] [Related]
12. Microcomputed tomography and microfinite element modeling for evaluating polymer scaffolds architecture and their mechanical properties. Alberich-Bayarri A; Moratal D; Ivirico JL; Rodríguez Hernández JC; Vallés-Lluch A; Martí-Bonmatí L; Estellés JM; Mano JF; Pradas MM; Ribelles JL; Salmerón-Sánchez M J Biomed Mater Res B Appl Biomater; 2009 Oct; 91(1):191-202. PubMed ID: 19425071 [TBL] [Abstract][Full Text] [Related]
13. Integrated additive design and manufacturing approach for the bioengineering of bone scaffolds for favorable mechanical and biological properties. Valainis D; Dondl P; Foehr P; Burgkart R; Kalkhof S; Duda GN; van Griensven M; Poh PSP Biomed Mater; 2019 Sep; 14(6):065002. PubMed ID: 31387088 [TBL] [Abstract][Full Text] [Related]
14. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond. Kilian D; Holtzhausen S; Groh W; Sembdner P; Czichy C; Lode A; Stelzer R; Gelinsky M Acta Biomater; 2023 Mar; 158():308-323. PubMed ID: 36563775 [TBL] [Abstract][Full Text] [Related]
15. Three-Dimensional Printing of Hollow-Struts-Packed Bioceramic Scaffolds for Bone Regeneration. Luo Y; Zhai D; Huan Z; Zhu H; Xia L; Chang J; Wu C ACS Appl Mater Interfaces; 2015 Nov; 7(43):24377-83. PubMed ID: 26479454 [TBL] [Abstract][Full Text] [Related]
16. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Miao S; Zhu W; Castro NJ; Leng J; Zhang LG Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832 [TBL] [Abstract][Full Text] [Related]
17. Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: fabrication, mechanical properties, and finite element modeling. Diego RB; Estellés JM; Sanz JA; García-Aznar JM; Sánchez MS J Biomed Mater Res B Appl Biomater; 2007 May; 81(2):448-55. PubMed ID: 17022064 [TBL] [Abstract][Full Text] [Related]
18. 3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy. Ma H; Feng C; Chang J; Wu C Acta Biomater; 2018 Oct; 79():37-59. PubMed ID: 30165201 [TBL] [Abstract][Full Text] [Related]
19. Design of 3D scaffolds for tissue engineering testing a tough polylactide-based graft copolymer. Dorati R; Colonna C; Tomasi C; Genta I; Bruni G; Conti B Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():130-9. PubMed ID: 24268242 [TBL] [Abstract][Full Text] [Related]
20. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds. Flaibani M; Elvassore N Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1632-9. PubMed ID: 24364970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]