These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
403 related articles for article (PubMed ID: 31924006)
1. Development and thorough characterization of the processing steps of an ink for 3D printing for bone tissue engineering. Müller M; Fisch P; Molnar M; Eggert S; Binelli M; Maniura-Weber K; Zenobi-Wong M Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110510. PubMed ID: 31924006 [TBL] [Abstract][Full Text] [Related]
2. Zirconia toughened hydroxyapatite biocomposite formed by a DLP 3D printing process for potential bone tissue engineering. Zhang J; Huang D; Liu S; Dong X; Li Y; Zhang H; Yang Z; Su Q; Huang W; Zheng W; Zhou W Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110054. PubMed ID: 31546401 [TBL] [Abstract][Full Text] [Related]
3. Three-Dimensional Extrusion Printing of Porous Scaffolds Using Storable Ceramic Inks. Diaz-Gomez L; Elizondo ME; Kontoyiannis PD; Koons GL; Dacunha-Marinho B; Zhang X; Ajayan P; Jansen JA; Melchiorri AJ; Mikos AG Tissue Eng Part C Methods; 2020 Jun; 26(6):292-305. PubMed ID: 32326874 [TBL] [Abstract][Full Text] [Related]
4. Effective production of multifunctional magnetic-sensitive biomaterial by an extrusion-based additive manufacturing technique. Rodrigues AFM; Torres PMC; Barros MJS; Presa R; Ribeiro N; Abrantes JCC; Belo JH; Amaral JS; Amaral VS; Bañobre-López M; Bettencourt A; Sousa A; Olhero SM Biomed Mater; 2020 Dec; 16(1):015011. PubMed ID: 32750692 [TBL] [Abstract][Full Text] [Related]
5. Multiscale porosity in a 3D printed gellan-gelatin composite for bone tissue engineering. Gupta D; Vashisth P; Bellare J Biomed Mater; 2021 Apr; 16(3):. PubMed ID: 33761468 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional (3D) printed scaffold and material selection for bone repair. Zhang L; Yang G; Johnson BN; Jia X Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607 [TBL] [Abstract][Full Text] [Related]
7. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering. Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034 [TBL] [Abstract][Full Text] [Related]
8. Digestion degree is a key factor to regulate the printability of pure tendon decellularized extracellular matrix bio-ink in extrusion-based 3D cell printing. Zhao F; Cheng J; Sun M; Yu H; Wu N; Li Z; Zhang J; Li Q; Yang P; Liu Q; Hu X; Ao Y Biofabrication; 2020 Jul; 12(4):045011. PubMed ID: 32640428 [TBL] [Abstract][Full Text] [Related]
9. Creating hierarchical porosity hydroxyapatite scaffolds with osteoinduction by three-dimensional printing and microwave sintering. Pei X; Ma L; Zhang B; Sun J; Sun Y; Fan Y; Gou Z; Zhou C; Zhang X Biofabrication; 2017 Nov; 9(4):045008. PubMed ID: 28976356 [TBL] [Abstract][Full Text] [Related]
10. Polyester-based ink platform with tunable bioactivity for 3D printing of tissue engineering scaffolds. Ji S; Dube K; Chesterman JP; Fung SL; Liaw CY; Kohn J; Guvendiren M Biomater Sci; 2019 Jan; 7(2):560-570. PubMed ID: 30534726 [TBL] [Abstract][Full Text] [Related]
11. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue. Adib AA; Sheikhi A; Shahhosseini M; Simeunović A; Wu S; Castro CE; Zhao R; Khademhosseini A; Hoelzle DJ Biofabrication; 2020 Jul; 12(4):045006. PubMed ID: 32464607 [TBL] [Abstract][Full Text] [Related]
12. Hydroxyapatite/alginate/gellan gum inks with osteoconduction and osteogenic potential for bioprinting bone tissue analogues. Bastos AR; da Silva LP; Maia FR; Franco A; Noro J; Silva C; Oliveira JM; Reis RL; Correlo VM Int J Biol Macromol; 2024 Jun; 271(Pt 2):132611. PubMed ID: 38797304 [TBL] [Abstract][Full Text] [Related]
13. The Effects of Solid Particle Containing Inks on the Printing Quality of Porous Pharmaceutical Structures Fabricated by 3D Semi-Solid Extrusion Printing. Teoh XY; Zhang B; Belton P; Chan SY; Qi S Pharm Res; 2022 Jun; 39(6):1267-1279. PubMed ID: 35661083 [TBL] [Abstract][Full Text] [Related]
15. Triethyleneglycol dimethacrylate addition improves the 3D-printability and construct properties of a GelMA-nHA composite system towards tissue engineering applications. Comeau PA; Willett TL Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110937. PubMed ID: 32409083 [TBL] [Abstract][Full Text] [Related]
16. 3D printing of complex GelMA-based scaffolds with nanoclay. Gao Q; Niu X; Shao L; Zhou L; Lin Z; Sun A; Fu J; Chen Z; Hu J; Liu Y; He Y Biofabrication; 2019 Apr; 11(3):035006. PubMed ID: 30836349 [TBL] [Abstract][Full Text] [Related]
17. Engineering 3D-printed core-shell hydrogel scaffolds reinforced with hybrid hydroxyapatite/polycaprolactone nanoparticles for in vivo bone regeneration. El-Habashy SE; El-Kamel AH; Essawy MM; Abdelfattah EA; Eltaher HM Biomater Sci; 2021 Jun; 9(11):4019-4039. PubMed ID: 33899858 [TBL] [Abstract][Full Text] [Related]
18. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks. Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781 [TBL] [Abstract][Full Text] [Related]
19. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Kumar A; I Matari IA; Han SS Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691 [TBL] [Abstract][Full Text] [Related]
20. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs. Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]