These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

664 related articles for article (PubMed ID: 31924046)

  • 1. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds.
    Samourides A; Browning L; Hearnden V; Chen B
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomimetic poly(glycerol sebacate)/poly(l-lactic acid) blend scaffolds for adipose tissue engineering.
    Frydrych M; Román S; MacNeil S; Chen B
    Acta Biomater; 2015 May; 18():40-9. PubMed ID: 25769230
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications.
    Kemppainen JM; Hollister SJ
    J Biomed Mater Res A; 2010 Jul; 94(1):9-18. PubMed ID: 20091702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro human chondrocyte culture on plasma-treated poly(glycerol sebacate) scaffolds.
    Theerathanagorn T; Klangjorhor J; Sakulsombat M; Pothacharoen P; Pruksakorn D; Kongtawelert P; Janvikul W
    J Biomater Sci Polym Ed; 2015; 26(18):1386-401. PubMed ID: 26387514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds.
    Brougham CM; Levingstone TJ; Shen N; Cooney GM; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28758358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroporous elastomeric scaffolds with extensive micropores for soft tissue engineering.
    Gao J; Crapo PM; Wang Y
    Tissue Eng; 2006 Apr; 12(4):917-25. PubMed ID: 16674303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of glycerol in manufacturing freeze-dried chitosan and cellulose foams for mechanically stable scaffolds in skin tissue engineering.
    Verčimáková K; Karbowniczek J; Sedlář M; Stachewicz U; Vojtová L
    Int J Biol Macromol; 2024 Aug; 275(Pt 1):133602. PubMed ID: 38964681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering.
    Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fibrinogen-modified sodium alginate as a scaffold material for skin tissue engineering.
    Solovieva EV; Fedotov AY; Mamonov VE; Komlev VS; Panteleyev AA
    Biomed Mater; 2018 Jan; 13(2):025007. PubMed ID: 28972200
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Manufacture and characterisation of EmDerm-novel hierarchically structured bio-active scaffolds for tissue regeneration.
    Lim X; Potter M; Cui Z; Dye JF
    J Mater Sci Mater Med; 2018 Jun; 29(6):79. PubMed ID: 29872930
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of various composition multicomponent chitosan/fish collagen/glycerin 3D porous scaffolds: Effect on morphology, mechanical strength, biostability and cytocompatibility.
    Ullah S; Zainol I; Chowdhury SR; Fauzi MB
    Int J Biol Macromol; 2018 May; 111():158-168. PubMed ID: 29305219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications.
    Guan J; Fujimoto KL; Sacks MS; Wagner WR
    Biomaterials; 2005 Jun; 26(18):3961-71. PubMed ID: 15626443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PHBV/PLLA-based composite scaffolds fabricated using an emulsion freezing/freeze-drying technique for bone tissue engineering: surface modification and in vitro biological evaluation.
    Sultana N; Wang M
    Biofabrication; 2012 Mar; 4(1):015003. PubMed ID: 22258057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tailoring the porosity and pore size of electrospun synthetic human elastin scaffolds for dermal tissue engineering.
    Rnjak-Kovacina J; Wise SG; Li Z; Maitz PK; Young CJ; Wang Y; Weiss AS
    Biomaterials; 2011 Oct; 32(28):6729-36. PubMed ID: 21683438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative study of bovine, porcine and avian collagens for the production of a tissue engineered dermis.
    Parenteau-Bareil R; Gauvin R; Cliche S; Gariépy C; Germain L; Berthod F
    Acta Biomater; 2011 Oct; 7(10):3757-65. PubMed ID: 21723967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly porous of hydroxyethyl cellulose biocomposite scaffolds for tissue engineering.
    Zulkifli FH; Hussain FSJ; Harun WSW; Yusoff MM
    Int J Biol Macromol; 2019 Feb; 122():562-571. PubMed ID: 30365990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of interconnected highly porous polymeric structures by a replication and freeze-drying process.
    Hou Q; Grijpma DW; Feijen J
    J Biomed Mater Res B Appl Biomater; 2003 Nov; 67(2):732-40. PubMed ID: 14598400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.