These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31924049)

  • 1. Kinking and cracking behavior in nacre under stepwise compressive loading.
    Ji HM; Liang SM; Li XW; Chen DL
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110364. PubMed ID: 31924049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damage-tolerance strategies for nacre tablets.
    Wang S; Zhu X; Li Q; Wang R; Wang X
    J Struct Biol; 2016 May; 194(2):199-204. PubMed ID: 26892674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of flaw-tolerance in nacre.
    Huang Z; Li X
    Sci Rep; 2013; 3():1693. PubMed ID: 23603788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The weak interfaces within tough natural composites: experiments on three types of nacre.
    Khayer Dastjerdi A; Rabiei R; Barthelat F
    J Mech Behav Biomed Mater; 2013 Mar; 19():50-60. PubMed ID: 23084045
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A microstructural study of individual nacre tablet of Pinctada maxima.
    Wang SN; Yan XH; Wang R; Yu DH; Wang XX
    J Struct Biol; 2013 Sep; 183(3):404-411. PubMed ID: 23933393
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ studies of nanoscale electromechanical behavior of nacre under flexural stresses using band excitation PFM.
    Li T; Chen L; Zeng K
    Acta Biomater; 2013 Apr; 9(4):5903-12. PubMed ID: 23305937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Orientation-dependent micromechanical behavior of nacre: In situ TEM experiments and finite element simulations.
    Peng XL; Lee S; Wilmers J; Oh SH; Bargmann S
    Acta Biomater; 2022 Jul; 147():120-128. PubMed ID: 35609803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biologically inspired crack delocalization in a high strain-rate environment.
    Knipprath C; Bond IP; Trask RS
    J R Soc Interface; 2012 Apr; 9(69):665-76. PubMed ID: 21880614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the fracture mechanisms of nacre: Effects of structural orientation.
    Jiao D; Qu RT; Weng ZY; Liu ZQ; Zhang ZF
    J Biomech; 2019 Nov; 96():109336. PubMed ID: 31540823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical behavior of mother-of-pearl and pearl with flat and spherical laminations.
    Jiao D; Liu ZQ; Zhu YK; Weng ZY; Zhang ZF
    Mater Sci Eng C Mater Biol Appl; 2016 Nov; 68():9-17. PubMed ID: 27523990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toughening mechanisms in bioinspired multilayered materials.
    Askarinejad S; Rahbar N
    J R Soc Interface; 2015 Jan; 12(102):20140855. PubMed ID: 25551150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex Composites Built through Freezing.
    Deville S; Tomsia AP; Meille S
    Acc Chem Res; 2022 Jun; 55(11):1492-1502. PubMed ID: 35588442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic texture determines mechanical properties of molluscan nacre.
    Frýda J; Šepitka J; Frýdová B; Hrabánková I; Lukeš J; Klicnarová M
    Comput Methods Biomech Biomed Engin; 2013; 16 Suppl 1():292-3. PubMed ID: 23923947
    [No Abstract]   [Full Text] [Related]  

  • 14. Compromise between mechanical and chemical protection mechanisms in the
    Wan C; Ma Y; Gorb SN
    J Exp Biol; 2019 Aug; 222(Pt 15):. PubMed ID: 31315934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Compression Fracture of CFRP Laminates Containing Stress Intensifications.
    Leopold C; Schütt M; Liebig WV; Philipkowski T; Kürten J; Schulte K; Fiedler B
    Materials (Basel); 2017 Sep; 10(9):. PubMed ID: 28872623
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catastrophic failure of nacre under pure shear stresses of torsion.
    Alghamdi S; Tan T; Hale-Sills C; Vilmont F; Xia T; Yang J; Huston D; Dewoolkar M
    Sci Rep; 2017 Oct; 7(1):13123. PubMed ID: 29030583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Artificial Nacre with High Toughness Amplification Factor: Residual Stress-Engineering Sparks Enhanced Extrinsic Toughening Mechanisms.
    Meng YF; Zhu YB; Zhou LC; Meng XS; Yang YL; Zhao R; Xia J; Yang B; Lu YJ; Wu HA; Mao LB; Yu SH
    Adv Mater; 2022 Mar; 34(9):e2108267. PubMed ID: 34957604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trivalent Iron Is Responsible for the Yellow Color Development in the Nacre of Akoya Pearl Oyster Shells.
    Kakinuma M; Yasumoto K; Suzuki M; Kasugai C; Koide M; Mitani K; Shidoji K; Kinoshita S; Hattori F; Maeyama K; Awaji M; Nagai K; Watabe S
    Mar Biotechnol (NY); 2020 Feb; 22(1):19-30. PubMed ID: 31728706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cymbiola nobilis shell: Toughening mechanisms in a crossed-lamellar structure.
    Ji H; Li X; Chen D
    Sci Rep; 2017 Jan; 7():40043. PubMed ID: 28094256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioinspired Hierarchical Alumina-Graphene Oxide-Poly(vinyl alcohol) Artificial Nacre with Optimized Strength and Toughness.
    Wang J; Qiao J; Wang J; Zhu Y; Jiang L
    ACS Appl Mater Interfaces; 2015 May; 7(17):9281-6. PubMed ID: 25867752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.