These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 31924055)
1. Surface modification enhances interfacial bonding in PLLA/MgO bone scaffold. Shuai C; Zan J; Yang Y; Peng S; Yang W; Qi F; Shen L; Tian Z Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110486. PubMed ID: 31924055 [TBL] [Abstract][Full Text] [Related]
2. Enhanced pH stability, cell viability and reduced degradation rate of poly(L-lactide)-based composite in vitro: effect of modified magnesium oxide nanoparticles. Yang J; Cao X; Zhao Y; Wang L; Liu B; Jia J; Liang H; Chen M J Biomater Sci Polym Ed; 2017 Apr; 28(5):486-503. PubMed ID: 28054502 [TBL] [Abstract][Full Text] [Related]
3. A poly(lactide) stereocomplex structure with modified magnesium oxide and its effects in enhancing the mechanical properties and suppressing inflammation. Kum CH; Cho Y; Seo SH; Joung YK; Ahn DJ; Han DK Small; 2014 Sep; 10(18):3783-94. PubMed ID: 24820693 [TBL] [Abstract][Full Text] [Related]
4. Interfacial reinforcement in a poly-l-lactic acid/mesoporous bioactive glass scaffold via polydopamine. Xu Y; Wu P; Feng P; Guo W; Yang W; Shuai C Colloids Surf B Biointerfaces; 2018 Oct; 170():45-53. PubMed ID: 29870952 [TBL] [Abstract][Full Text] [Related]
5. Construction of a stereocomplex between poly(D-lactide) grafted hydroxyapatite and poly(L-lactide): toward a bioactive composite scaffold with enhanced interfacial bonding. Shuai C; Yu L; Feng P; Peng S; Pan H; Bai X J Mater Chem B; 2022 Jan; 10(2):214-223. PubMed ID: 34927656 [TBL] [Abstract][Full Text] [Related]
7. Biomimetic mineralized strontium-doped hydroxyapatite on porous poly(l-lactic acid) scaffolds for bone defect repair. Ge M; Ge K; Gao F; Yan W; Liu H; Xue L; Jin Y; Ma H; Zhang J Int J Nanomedicine; 2018; 13():1707-1721. PubMed ID: 29599615 [TBL] [Abstract][Full Text] [Related]
8. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. Lou T; Wang X; Song G; Gu Z; Yang Z J Mater Sci Mater Med; 2015 Jan; 26(1):5366. PubMed ID: 25578714 [TBL] [Abstract][Full Text] [Related]
9. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration. Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327 [TBL] [Abstract][Full Text] [Related]
10. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration. Liu Y; Huang Q; Feng Q Biomed Mater; 2013 Dec; 8(6):065001. PubMed ID: 24225162 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Lou T; Wang X; Song G Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011 [TBL] [Abstract][Full Text] [Related]
12. Surface modification of nanodiamond: Toward the dispersion of reinforced phase in poly-l-lactic acid scaffolds. Shuai C; Li Y; Wang G; Yang W; Peng S; Feng P Int J Biol Macromol; 2019 Apr; 126():1116-1124. PubMed ID: 30611811 [TBL] [Abstract][Full Text] [Related]
13. The Degradation Properties of MgO Whiskers/PLLA Composite In Vitro. Zhao Y; Liu B; Bi H; Yang J; Li W; Liang H; Liang Y; Jia Z; Shi S; Chen M Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30217013 [TBL] [Abstract][Full Text] [Related]
14. Adding MgO nanoparticles to hydroxyapatite-PLLA nanocomposites for improved bone tissue engineering applications. Hickey DJ; Ercan B; Sun L; Webster TJ Acta Biomater; 2015 Mar; 14():175-84. PubMed ID: 25523875 [TBL] [Abstract][Full Text] [Related]
15. Fabrication and finite element simulation of antibacterial 3D printed Poly L-lactic acid scaffolds coated with alginate/magnesium oxide for bone tissue regeneration. Angili SN; Morovvati MR; Kardan-Halvaei M; Saber-Samandari S; Razmjooee K; Abed AM; Toghraie D; Khandan A Int J Biol Macromol; 2023 Jan; 224():1152-1165. PubMed ID: 36346262 [TBL] [Abstract][Full Text] [Related]
16. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
17. PHBV microspheres--PLGA matrix composite scaffold for bone tissue engineering. Huang W; Shi X; Ren L; Du C; Wang Y Biomaterials; 2010 May; 31(15):4278-85. PubMed ID: 20199806 [TBL] [Abstract][Full Text] [Related]
18. Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite. Wang X; Song G; Lou T J Mater Sci Mater Med; 2010 Jan; 21(1):183-8. PubMed ID: 19705258 [TBL] [Abstract][Full Text] [Related]
19. Strut size and surface area effects on long-term in vivo degradation in computer designed poly(L-lactic acid) three-dimensional porous scaffolds. Saito E; Liu Y; Migneco F; Hollister SJ Acta Biomater; 2012 Jul; 8(7):2568-77. PubMed ID: 22446030 [TBL] [Abstract][Full Text] [Related]
20. Fabrication and characterization of nano-composite scaffold of PLLA/silane modified hydroxyapatite. Wang X; Song G; Lou T Med Eng Phys; 2010 May; 32(4):391-7. PubMed ID: 20189867 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]