BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31924348)

  • 1. Effects of in vivo fatigue-induced subchondral bone microdamage on the mechanical response of cartilage-bone under a single impact compression.
    Malekipour F; Hitchens PL; Whitton RC; Lee PV
    J Biomech; 2020 Feb; 100():109594. PubMed ID: 31924348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stiffness and energy dissipation across the superficial and deeper third metacarpal subchondral bone in Thoroughbred racehorses under high-rate compression.
    Malekipour F; Whitton CR; Lee PV
    J Mech Behav Biomed Mater; 2018 Sep; 85():51-56. PubMed ID: 29852352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of in vivo fatigue-induced microdamage on local subchondral bone strains.
    Malekipour F; Hitchens PL; Whitton RC; Vee-Sin Lee P
    J Mech Behav Biomed Mater; 2022 Dec; 136():105491. PubMed ID: 36198232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical testing of the calcified metacarpal articular surface and its association with subchondral bone microstructure in Thoroughbred racehorses.
    Williamson AJ; Sims NA; Thomas CDL; Lee PVS; Stevenson MA; Whitton RC
    Equine Vet J; 2018 Mar; 50(2):255-260. PubMed ID: 28833497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subchondral bone microdamage accumulation in distal metacarpus of Thoroughbred racehorses.
    Whitton RC; Ayodele BA; Hitchens PL; Mackie EJ
    Equine Vet J; 2018 Nov; 50(6):766-773. PubMed ID: 29660153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques.
    Ayodele BA; Malekipour F; Pagel CN; Mackie EJ; Whitton RC
    J Anat; 2024 Jul; 245(1):58-69. PubMed ID: 38481117
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanical response of local regions of subchondral bone under physiological loading conditions.
    Shaktivesh S; Malekipour F; Whitton RC; Lee PV
    J Mech Behav Biomed Mater; 2024 Apr; 152():106405. PubMed ID: 38271752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The relationship between microstructure, stiffness and compressive fatigue life of equine subchondral bone.
    Martig S; Hitchens PL; Lee PVS; Whitton RC
    J Mech Behav Biomed Mater; 2020 Jan; 101():103439. PubMed ID: 31557658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue behavior of subchondral bone under simulated physiological loads of equine athletic training.
    Shaktivesh S; Malekipour F; Whitton RC; Hitchens PL; Lee PV
    J Mech Behav Biomed Mater; 2020 Oct; 110():103920. PubMed ID: 32957215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subchondral bone microarchitecture and failure mechanism under compression: A finite element study.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2017 Apr; 55():85-91. PubMed ID: 28284669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomechanical and Microstructural Properties of Subchondral Bone From Three Metacarpophalangeal Joint Sites in Thoroughbred Racehorses.
    Pearce DJ; Hitchens PL; Malekipour F; Ayodele B; Lee PVS; Whitton RC
    Front Vet Sci; 2022; 9():923356. PubMed ID: 35847629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shock absorbing ability of articular cartilage and subchondral bone under impact compression.
    Malekipour F; Whitton C; Oetomo D; Lee PV
    J Mech Behav Biomed Mater; 2013 Oct; 26():127-35. PubMed ID: 23746699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computed tomographic imaging of subchondral fatigue cracks in the distal end of the third metacarpal bone in the thoroughbred racehorse can predict crack micromotion in an ex-vivo model.
    Dubois MS; Morello S; Rayment K; Markel MD; Vanderby R; Kalscheur VL; Hao Z; McCabe RP; Marquis P; Muir P
    PLoS One; 2014; 9(7):e101230. PubMed ID: 25077477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of subchondral bone in the distal aspect of third metacarpal bones from Thoroughbred racehorses.
    Rubio-Martínez LM; Cruz AM; Gordon K; Hurtig MB
    Am J Vet Res; 2008 Nov; 69(11):1423-33. PubMed ID: 18980424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Equine subchondral bone failure threshold under impact compression applied through articular cartilage.
    Malekipour F; Oetomo D; Lee PV
    J Biomech; 2016 Jul; 49(10):2053-2059. PubMed ID: 27260020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural changes in cartilage and bone related to repetitive overloading in an equine athlete model.
    Turley SM; Thambyah A; Riggs CM; Firth EC; Broom ND
    J Anat; 2014 Jun; 224(6):647-58. PubMed ID: 24689513
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compressive fatigue life of subchondral bone of the metacarpal condyle in thoroughbred racehorses.
    Martig S; Lee PV; Anderson GA; Whitton RC
    Bone; 2013 Dec; 57(2):392-8. PubMed ID: 24063945
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrast-enhanced CT facilitates rapid, non-destructive assessment of cartilage and bone properties of the human metacarpal.
    Lakin BA; Ellis DJ; Shelofsky JS; Freedman JD; Grinstaff MW; Snyder BD
    Osteoarthritis Cartilage; 2015 Dec; 23(12):2158-2166. PubMed ID: 26067518
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural characterization of subchondral bone in the distal aspect of third metacarpal bones from Thoroughbred racehorses via micro--computed tomography.
    Rubio-Martínez LM; Cruz AM; Gordon K; Hurtig MB
    Am J Vet Res; 2008 Nov; 69(11):1413-22. PubMed ID: 18980423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of microarchitecture on stressed volume and mechanical fatigue behaviour of equine subchondral bone.
    Koshyk A; Pohl AJ; Takahashi Y; Scott WM; Sparks HD; Edwards WB
    Bone; 2024 May; 182():117054. PubMed ID: 38395248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.