BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 31924348)

  • 21. Morphological analysis of third metacarpus cartilage and subchondral bone in Thoroughbred racehorses: An ex vivo study.
    Marsiglia MF; Yamada ALM; Agreste FR; de Sá LRM; Nieman RT; da Silva LCLC
    Anat Rec (Hoboken); 2022 Dec; 305(12):3385-3397. PubMed ID: 35338614
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.
    Whitton RC; Trope GD; Ghasem-Zadeh A; Anderson GA; Parkin TD; Mackie EJ; Seeman E
    Bone; 2010 Oct; 47(4):826-31. PubMed ID: 20659599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site.
    Doube M; Firth EC; Boyde A; Bushby AJ
    Eur Cell Mater; 2010 Jun; 19():242-51. PubMed ID: 20524176
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of subchondral bone remodelling in collapse of the articular surface of Thoroughbred racehorses with palmar osteochondral disease.
    Bani Hassan E; Mirams M; Ghasem-Zadeh A; Mackie EJ; Whitton RC
    Equine Vet J; 2016 Mar; 48(2):228-33. PubMed ID: 25582246
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Subchondral bone fatigue injury in the parasagittal condylar grooves of the third metacarpal bone in thoroughbred racehorses elevates site-specific strain concentration.
    Irandoust S; Whitton RC; Muir P; Henak CR
    J Mech Behav Biomed Mater; 2024 Jul; 155():106561. PubMed ID: 38678748
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shock absorbing ability in healthy and damaged cartilage-bone under high-rate compression.
    Shaktivesh ; Malekipour F; Lee PVS
    J Mech Behav Biomed Mater; 2019 Feb; 90():388-394. PubMed ID: 30445365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of subchondral bone properties and changes in development of load-induced osteoarthritis in mice.
    Adebayo OO; Ko FC; Wan PT; Goldring SR; Goldring MB; Wright TM; van der Meulen MCH
    Osteoarthritis Cartilage; 2017 Dec; 25(12):2108-2118. PubMed ID: 28919430
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of subchondral bone mineral density associated with articular cartilage structure and integrity in healthy equine joints with different functional demands.
    Lewis CW; Williamson AK; Chen AC; Bae WC; Temple MM; Wong WV; Nugent GE; James SP; Wheeler DL; Sah RL; Kawcak CE
    Am J Vet Res; 2005 Oct; 66(10):1823-9. PubMed ID: 16273917
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A method for fatigue testing of equine McIII subchondral bone under a simulated fast workout training programme.
    Shaktivesh ; Malekipour F; Whitton C; Lee PVS
    Equine Vet J; 2020 Mar; 52(2):332-335. PubMed ID: 31403713
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Detection of articular pathology of the distal aspect of the third metacarpal bone in thoroughbred racehorses: comparison of radiography, computed tomography and magnetic resonance imaging.
    O'Brien T; Baker TA; Brounts SH; Sample SJ; Markel MD; Scollay MC; Marquis P; Muir P
    Vet Surg; 2011 Dec; 40(8):942-51. PubMed ID: 22092025
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mathematical modelling of bone adaptation of the metacarpal subchondral bone in racehorses.
    Hitchens PL; Pivonka P; Malekipour F; Whitton RC
    Biomech Model Mechanobiol; 2018 Jun; 17(3):877-890. PubMed ID: 29344755
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subchondral bone morphology in the metacarpus of racehorses in training changes with distance from the articular surface but not with age.
    Martig S; Hitchens PL; Stevenson MA; Whitton RC
    J Anat; 2018 Jun; 232(6):919-930. PubMed ID: 29446086
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Subchondral bone failure in an equine model of overload arthrosis.
    Norrdin RW; Kawcak CE; Capwell BA; McIlwraith CW
    Bone; 1998 Feb; 22(2):133-9. PubMed ID: 9477236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of a method to investigate strain distribution across the cartilage-bone interface in guinea pig model of spontaneous osteoarthritis using lab-based contrast enhanced X-ray-computed tomography and digital volume correlation.
    Davis S; Karali A; Zekonyte J; Roldo M; Blunn G
    J Mech Behav Biomed Mater; 2023 Aug; 144():105999. PubMed ID: 37406483
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relationship between cartilage and subchondral bone lesions in repetitive impact trauma-induced equine osteoarthritis.
    Lacourt M; Gao C; Li A; Girard C; Beauchamp G; Henderson JE; Laverty S
    Osteoarthritis Cartilage; 2012 Jun; 20(6):572-83. PubMed ID: 22343573
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exercise-induced metacarpophalangeal joint adaptation in the Thoroughbred racehorse.
    Muir P; Peterson AL; Sample SJ; Scollay MC; Markel MD; Kalscheur VL
    J Anat; 2008 Dec; 213(6):706-17. PubMed ID: 19094186
    [TBL] [Abstract][Full Text] [Related]  

  • 37. QCT-based computational bone strength assessment updated with MRI-derived 'hidden' microporosity.
    McPhee S; Kershaw LE; Daniel CR; Peña Fernández M; Cillán-García E; Taylor SE; Wolfram U
    J Mech Behav Biomed Mater; 2023 Nov; 147():106094. PubMed ID: 37741181
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Qualitative assessment of bone density at the distal articulating surface of the third metacarpal in Thoroughbred racehorses with and without condylar fracture.
    Loughridge AB; Hess AM; Parkin TD; Kawcak CE
    Equine Vet J; 2017 Mar; 49(2):172-177. PubMed ID: 26638772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Single Axial Impact Load Causes Articular Damage That Is Not Visible with Micro-Computed Tomography: An
    Blom RP; Mol D; van Ruijven LJ; Kerkhoffs GMMJ; Smit TH
    Cartilage; 2021 Dec; 13(2_suppl):1490S-1500S. PubMed ID: 31540553
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints.
    Muir P; McCarthy J; Radtke CL; Markel MD; Santschi EM; Scollay MC; Kalscheur VL
    Bone; 2006 Mar; 38(3):342-9. PubMed ID: 16275175
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.