These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 31924497)
81. Synthesis of 3-deoxypentacyclic triterpene derivatives as inhibitors of glycogen phosphorylase. Zhang P; Hao J; Liu J; Lu Q; Sheng H; Zhang L; Sun H J Nat Prod; 2009 Aug; 72(8):1414-8. PubMed ID: 19642687 [TBL] [Abstract][Full Text] [Related]
82. Two new triterpenoids from Lu D; Zhang W; Jiang Y; Zhang Y; Pan D; Zhang D; Yao X; Yu Y Nat Prod Res; 2019 Oct; 33(19):2789-2794. PubMed ID: 30518256 [TBL] [Abstract][Full Text] [Related]
83. Uridine Diphosphate-Dependent Glycosyltransferases from Chang TS; Wu JY; Wang TY; Wu KY; Chiang CM Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30400606 [No Abstract] [Full Text] [Related]
84. Effects of Salidroside on cobalt chloride-induced hypoxia damage and mTOR signaling repression in PC12 cells. Zhong X; Lin R; Li Z; Mao J; Chen L Biol Pharm Bull; 2014; 37(7):1199-206. PubMed ID: 24989011 [TBL] [Abstract][Full Text] [Related]
85. Synthesis and protective effect of new ligustrazine-benzoic acid derivatives against CoCl2-induced neurotoxicity in differentiated PC12 cells. Wang P; Zhang H; Chu F; Xu X; Lin J; Chen C; Li G; Cheng Y; Wang L; Li Q; Zhang Y; Lei H Molecules; 2013 Oct; 18(10):13027-42. PubMed ID: 24145795 [TBL] [Abstract][Full Text] [Related]
86. Lotus japonicus Triterpenoid Profile and Characterization of the CYP716A51 and LjCYP93E1 Genes Involved in Their Biosynthesis In Planta. Suzuki H; Fukushima EO; Shimizu Y; Seki H; Fujisawa Y; Ishimoto M; Osakabe K; Osakabe Y; Muranaka T Plant Cell Physiol; 2019 Nov; 60(11):2496-2509. PubMed ID: 31418782 [TBL] [Abstract][Full Text] [Related]
87. Two CYP716A subfamily cytochrome P450 monooxygenases of sweet basil play similar but nonredundant roles in ursane- and oleanane-type pentacyclic triterpene biosynthesis. Misra RC; Sharma S; Sandeep ; Garg A; Chanotiya CS; Ghosh S New Phytol; 2017 Apr; 214(2):706-720. PubMed ID: 28967669 [TBL] [Abstract][Full Text] [Related]
88. Evaluation of the antibacterial activity of the methylene chloride extract of Miconia ligustroides, isolated triterpene acids, and ursolic acid derivatives. Cunha WR; de Matos GX; Souza MG; Tozatti MG; Andrade e Silva ML; Martins CH; da Silva R; Da Silva Filho AA Pharm Biol; 2010 Feb; 48(2):166-9. PubMed ID: 20645834 [TBL] [Abstract][Full Text] [Related]
89. Biotransformation of Betulonic Acid by the Fungus Song KN; Lu YJ; Chu CJ; Wu YN; Huang HL; Fan BY; Chen GT J Nat Prod; 2021 Oct; 84(10):2664-2674. PubMed ID: 34546050 [TBL] [Abstract][Full Text] [Related]
90. Antimycobacterial, docking and molecular dynamic studies of pentacyclic triterpenes from Buddleja saligna leaves. Singh A; Venugopala KN; Khedr MA; Pillay M; Nwaeze KU; Coovadia Y; Shode F; Odhav B J Biomol Struct Dyn; 2017 Sep; 35(12):2654-2664. PubMed ID: 28278765 [TBL] [Abstract][Full Text] [Related]
91. Biotransformation into 11α-hydroxyprogesterone glucosides by glucosyltransferase. Yamaguchi T; Lee JH; Lim AR; Yu EJ; Oh TJ Steroids; 2019 May; 145():32-38. PubMed ID: 30753844 [TBL] [Abstract][Full Text] [Related]
92. Identification of chemotypes in bitter melon by metabolomics: a plant with potential benefit for management of diabetes in traditional Chinese medicine. Zhou S; Allard PM; Wolfrum C; Ke C; Tang C; Ye Y; Wolfender JL Metabolomics; 2019 Jul; 15(8):104. PubMed ID: 31321563 [TBL] [Abstract][Full Text] [Related]
93. Microbial transformation of the anti-diabetic agent corosolic acid by Cunninghamella echinulata. Feng X; Lu YH; Liu Z; Li DP; Zou YX; Fang YQ; Chu ZY J Asian Nat Prod Res; 2017 Jul; 19(7):645-650. PubMed ID: 27240189 [TBL] [Abstract][Full Text] [Related]
94. Microbial hydroxylation and glycosidation of oleanolic acid by Yan S; Lin H; Huang H; Yang M; Xu B; Chen G Nat Prod Res; 2019 Jul; 33(13):1849-1855. PubMed ID: 29842789 [TBL] [Abstract][Full Text] [Related]
95. Solid-phase library synthesis of bi-functional derivatives of oleanolic and maslinic acids and their cytotoxicity on three cancer cell lines. Parra A; Martin-Fonseca S; Rivas F; Reyes-Zurita FJ; Medina-O'Donnell M; Rufino-Palomares EE; Martinez A; Garcia-Granados A; Lupiañez JA; Albericio F ACS Comb Sci; 2014 Aug; 16(8):428-47. PubMed ID: 24916186 [TBL] [Abstract][Full Text] [Related]
96. Structure-activity relationship study of asiatic acid derivatives against beta amyloid (A beta)-induced neurotoxicity. Jew SS; Yoo CH; Lim DY; Kim H; Mook-Jung I; Jung MW; Choi H; Jung YH; Kim H; Park HG Bioorg Med Chem Lett; 2000 Jan; 10(2):119-21. PubMed ID: 10673093 [TBL] [Abstract][Full Text] [Related]
97. Activation of Cryptic hop Genes from Streptomyces peucetius ATCC 27952 Involved in Hopanoid Biosynthesis. Ghimire GP; Koirala N; Sohng JK J Microbiol Biotechnol; 2015 May; 25(5):658-61. PubMed ID: 25406531 [TBL] [Abstract][Full Text] [Related]
98. Modulation of Tumour-Related Signaling Pathways by Natural Pentacyclic Triterpenoids and their Semisynthetic Derivatives. Markov AV; Zenkova MA; Logashenko EB Curr Med Chem; 2017; 24(13):1277-1320. PubMed ID: 28078994 [TBL] [Abstract][Full Text] [Related]
99. A new cytotoxic, apoptosis-inducing triterpenoid from the rhizomes of Astilbe chinensis. Zhang YB; Peng XY; Sun HX Chem Biodivers; 2008 Jan; 5(1):189-96. PubMed ID: 18205122 [TBL] [Abstract][Full Text] [Related]
100. Recent Progress in Oleanolic Acid: Structural Modification and Biological Activity. Wang W; Li Y; Li Y; Sun D; Li H; Chen L Curr Top Med Chem; 2022; 22(1):3-23. PubMed ID: 34749614 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]