These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 31924614)
1. Dual Agarolytic Pathways in a Marine Bacterium, Yu S; Yun EJ; Kim DH; Park SY; Kim KH Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924614 [No Abstract] [Full Text] [Related]
2. Characterization of Agarolytic Pathway in a Terrestrial Bacterium Li G; Guo R; Wu S; Cheng S; Li J; Liu Z; Xie W; Sun X; Zhang Q; Li Z; Xu J; Wu J; Wei Z; Hu F Front Microbiol; 2022; 13():828687. PubMed ID: 35432256 [TBL] [Abstract][Full Text] [Related]
3. A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers. Lee CH; Kim HT; Yun EJ; Lee AR; Kim SR; Kim JH; Choi IG; Kim KH Appl Environ Microbiol; 2014 Oct; 80(19):5965-73. PubMed ID: 25038102 [TBL] [Abstract][Full Text] [Related]
4. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source. Yun EJ; Yu S; Kim S; Kim KH J Biotechnol; 2018 Mar; 270():12-20. PubMed ID: 29408675 [TBL] [Abstract][Full Text] [Related]
5. NADP Tsevelkhorloo M; Kim SH; Kang DK; Lee CR; Hong SK J Microbiol Biotechnol; 2021 May; 31(5):756-763. PubMed ID: 33820885 [TBL] [Abstract][Full Text] [Related]
6. Genome sequence of Vibrio sp. strain EJY3, an agarolytic marine bacterium metabolizing 3,6-anhydro-L-galactose as a sole carbon source. Roh H; Yun EJ; Lee S; Ko HJ; Kim S; Kim BY; Song H; Lim KI; Kim KH; Choi IG J Bacteriol; 2012 May; 194(10):2773-4. PubMed ID: 22535948 [TBL] [Abstract][Full Text] [Related]
7. Biochemical Characteristics and Substrate Degradation Pattern of a Novel Exo-Type β-Agarase from the Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. Strain MY04. Han W; Cheng Y; Wang D; Wang S; Liu H; Gu J; Wu Z; Li F Appl Environ Microbiol; 2016 Aug; 82(16):4944-54. PubMed ID: 27260364 [TBL] [Abstract][Full Text] [Related]
8. The novel catabolic pathway of 3,6-anhydro-L-galactose, the main component of red macroalgae, in a marine bacterium. Yun EJ; Lee S; Kim HT; Pelton JG; Kim S; Ko HJ; Choi IG; Kim KH Environ Microbiol; 2015 May; 17(5):1677-88. PubMed ID: 25156229 [TBL] [Abstract][Full Text] [Related]
9. Purification and characterization of a novel enzyme, alpha-neoagarooligosaccharide hydrolase (alpha-NAOS hydrolase), from a marine bacterium, Vibrio sp. strain JT0107. Sugano Y; Kodama H; Terada I; Yamazaki Y; Noma M J Bacteriol; 1994 Nov; 176(22):6812-8. PubMed ID: 7961439 [TBL] [Abstract][Full Text] [Related]
10. A Novel Auxiliary Agarolytic Pathway Expands Metabolic Versatility in the Agar-Degrading Marine Bacterium Colwellia echini A3 Pathiraja D; Christiansen L; Park B; Schultz-Johansen M; Bang G; Stougaard P; Choi IG Appl Environ Microbiol; 2021 May; 87(12):e0023021. PubMed ID: 33811026 [TBL] [Abstract][Full Text] [Related]
11. 3,6-Anhydro-L-galactonate cycloisomerase from Vibrio sp. strain EJY3: crystallization and X-ray crystallographic analysis. Lee S; Yun EJ; Kim KH; Kim HY; Choi IG Acta Crystallogr F Struct Biol Commun; 2017 Sep; 73(Pt 9):511-514. PubMed ID: 28876229 [TBL] [Abstract][Full Text] [Related]
12. Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Jiang C; Liu Z; Cheng D; Mao X Biotechnol Adv; 2020 Dec; 45():107641. PubMed ID: 33035614 [TBL] [Abstract][Full Text] [Related]
13. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Yun EJ; Yu S; Kim KH Appl Microbiol Biotechnol; 2017 Jul; 101(14):5581-5589. PubMed ID: 28656380 [TBL] [Abstract][Full Text] [Related]
14. Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass. Pathiraja D; Lee S; Choi IG J Agric Food Chem; 2018 Jul; 66(26):6814-6821. PubMed ID: 29896965 [TBL] [Abstract][Full Text] [Related]
15. Identification and biochemical characterization of a novel cold-adapted 1,3-α-3,6-anhydro-L-galactosidase, Ahg786, from Gayadomonas joobiniege G7. Asghar S; Lee CR; Park JS; Chi WJ; Kang DK; Hong SK Appl Microbiol Biotechnol; 2018 Oct; 102(20):8855-8866. PubMed ID: 30128580 [TBL] [Abstract][Full Text] [Related]
16. Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Seo JW; Tsevelkhorloo M; Lee CR; Kim SH; Kang DK; Asghar S; Hong SK J Microbiol Biotechnol; 2020 Nov; 30(11):1659-1669. PubMed ID: 32876074 [TBL] [Abstract][Full Text] [Related]
17. Characterization of Neoagarooligosaccharide Hydrolase Jin Y; Yu S; Kim DH; Yun EJ; Kim KH Mar Drugs; 2021 May; 19(5):. PubMed ID: 34068166 [TBL] [Abstract][Full Text] [Related]
18. Purification and characterization of a new agarase from a marine bacterium, Vibrio sp. strain JT0107. Sugano Y; Terada I; Arita M; Noma M; Matsumoto T Appl Environ Microbiol; 1993 May; 59(5):1549-54. PubMed ID: 8517750 [TBL] [Abstract][Full Text] [Related]
19. Genomic and proteomic analyses of the agarolytic system expressed by Saccharophagus degradans 2-40. Ekborg NA; Taylor LE; Longmire AG; Henrissat B; Weiner RM; Hutcheson SW Appl Environ Microbiol; 2006 May; 72(5):3396-405. PubMed ID: 16672483 [TBL] [Abstract][Full Text] [Related]
20. Substrate recognition and hydrolysis by a family 50 exo-β-agarase, Aga50D, from the marine bacterium Saccharophagus degradans. Pluvinage B; Hehemann JH; Boraston AB J Biol Chem; 2013 Sep; 288(39):28078-88. PubMed ID: 23921382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]