These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 31924747)

  • 1. Identification of CXCR4 and CXCL10 as Potential Predictive Biomarkers in Triple Negative Breast Cancer (TNBC).
    Chuan T; Li T; Yi C
    Med Sci Monit; 2020 Jan; 26():e918281. PubMed ID: 31924747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.
    Zhai Q; Li H; Sun L; Yuan Y; Wang X
    Breast Cancer; 2019 Nov; 26(6):784-791. PubMed ID: 31197620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrated analysis of differentially expressed genes and pathways in triple‑negative breast cancer.
    Peng C; Ma W; Xia W; Zheng W
    Mol Med Rep; 2017 Mar; 15(3):1087-1094. PubMed ID: 28075450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KEGG-expressed genes and pathways in triple negative breast cancer: Protocol for a systematic review and data mining.
    Chen J; Liu C; Cen J; Liang T; Xue J; Zeng H; Zhang Z; Xu G; Yu C; Lu Z; Wang Z; Jiang J; Zhan X; Zeng J
    Medicine (Baltimore); 2020 May; 99(18):e19986. PubMed ID: 32358373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulated cyclins may be novel genes for triple-negative breast cancer based on bioinformatic analysis.
    Lu Y; Yang G; Xiao Y; Zhang T; Su F; Chang R; Ling X; Bai Y
    Breast Cancer; 2020 Sep; 27(5):903-911. PubMed ID: 32338339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis.
    Li MX; Jin LT; Wang TJ; Feng YJ; Pan CP; Zhao DM; Shao J
    Onco Targets Ther; 2018; 11():4105-4112. PubMed ID: 30140156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hsa-mir-3163 and CCNB1 may be potential biomarkers and therapeutic targets for androgen receptor positive triple-negative breast cancer.
    Qiu P; Guo Q; Yao Q; Chen J; Lin J
    PLoS One; 2021; 16(11):e0254283. PubMed ID: 34797837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of key genes as potential biomarkers for triple‑negative breast cancer using integrating genomics analysis.
    Zhong G; Lou W; Shen Q; Yu K; Zheng Y
    Mol Med Rep; 2020 Feb; 21(2):557-566. PubMed ID: 31974598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Screening Hub Genes as Prognostic Biomarkers of Hepatocellular Carcinoma by Bioinformatics Analysis.
    Zhou Z; Li Y; Hao H; Wang Y; Zhou Z; Wang Z; Chu X
    Cell Transplant; 2019 Dec; 28(1_suppl):76S-86S. PubMed ID: 31822116
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coexpression Network Analysis of Genes Related to the Characteristics of Tumor Stemness in Triple-Negative Breast Cancer.
    Suo HD; Tao Z; Zhang L; Jin ZN; Li XY; Ma W; Wang Z; Qiu Y; Jin F; Chen B; Cao Y
    Biomed Res Int; 2020; 2020():7575862. PubMed ID: 32766313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis.
    Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J
    Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying hepatocellular carcinoma-related hub genes by bioinformatics analysis and CYP2C8 is a potential prognostic biomarker.
    Li C; Zhou D; Jiang X; Liu M; Tang H; Mei Z
    Gene; 2019 May; 698():9-18. PubMed ID: 30825595
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer.
    Naorem LD; Muthaiyan M; Venkatesan A
    J Cell Biochem; 2019 Apr; 120(4):6154-6167. PubMed ID: 30302816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly heterogeneous-related genes of triple-negative breast cancer: potential diagnostic and prognostic biomarkers.
    Liu Y; Teng L; Fu S; Wang G; Li Z; Ding C; Wang H; Bi L
    BMC Cancer; 2021 May; 21(1):644. PubMed ID: 34053447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of aberrantly methylated differentially expressed genes in breast cancer by integrated bioinformatics analysis.
    Yi L; Luo P; Zhang J
    J Cell Biochem; 2019 Sep; 120(9):16229-16243. PubMed ID: 31081184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High level of CXCR4 in triple-negative breast cancer specimens associated with a poor clinical outcome.
    Yu S; Wang X; Liu G; Zhu X; Chen Y
    Acta Med Okayama; 2013; 67(6):369-75. PubMed ID: 24356721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of an mRNA-miRNA-lncRNA network prognostic for triple-negative breast cancer.
    Huang Y; Wang X; Zheng Y; Chen W; Zheng Y; Li G; Lou W; Wang X
    Aging (Albany NY); 2021 Jan; 13(1):1153-1175. PubMed ID: 33428596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of potential oncogenes in triple-negative breast cancer based on bioinformatics analyses.
    Xiao X; Zhang Z; Luo R; Peng R; Sun Y; Wang J; Chen X
    Oncol Lett; 2021 May; 21(5):363. PubMed ID: 33747220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel biomarkers identified in triple-negative breast cancer through RNA-sequencing.
    Chen YL; Wang K; Xie F; Zhuo ZL; Liu C; Yang Y; Wang S; Zhao XT
    Clin Chim Acta; 2022 Jun; 531():302-308. PubMed ID: 35504321
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of NUF2 and FAM83D as potential biomarkers in triple-negative breast cancer.
    Zhai X; Yang Z; Liu X; Dong Z; Zhou D
    PeerJ; 2020; 8():e9975. PubMed ID: 33005492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.