These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31924762)

  • 1. Natural variation of an EF-hand Ca
    Cao Y; Zhang M; Liang X; Li F; Shi Y; Yang X; Jiang C
    Nat Commun; 2020 Jan; 11(1):186. PubMed ID: 31924762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na
    Zhang M; Cao Y; Wang Z; Wang ZQ; Shi J; Liang X; Song W; Chen Q; Lai J; Jiang C
    New Phytol; 2018 Feb; 217(3):1161-1176. PubMed ID: 29139111
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na
    Sun TJ; Fan L; Yang J; Cao RZ; Yang CY; Zhang J; Wang DM
    BMC Plant Biol; 2019 Nov; 19(1):469. PubMed ID: 31690290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion homeostasis and Na+ transport-related gene expression in two cotton (Gossypium hirsutum L.) varieties under saline, alkaline and saline-alkaline stresses.
    Sun J; Li S; Guo H; Hou Z
    PLoS One; 2021; 16(8):e0256000. PubMed ID: 34375358
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Recretohalophyte
    Che B; Cheng C; Fang J; Liu Y; Jiang L; Yu B
    Int J Mol Sci; 2019 Jun; 20(12):. PubMed ID: 31208046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative Control Between Proton Pumps and SOS1 Antiporters in Roots is Crucial for Maintaining Low Na+ Accumulation and Salt Tolerance in Ammonium-Supplied Sorghum bicolor.
    Miranda RS; Mesquita RO; Costa JH; Alvarez-Pizarro JC; Prisco JT; Gomes-Filho E
    Plant Cell Physiol; 2017 Mar; 58(3):522-536. PubMed ID: 28158828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium/calmodulin-dependent protein kinase OsDMI3 positively regulates saline-alkaline tolerance in rice roots.
    Ni L; Wang S; Shen T; Wang Q; Chen C; Xia J; Jiang M
    Plant Signal Behav; 2020 Nov; 15(11):1813999. PubMed ID: 32857669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A HAK family Na
    Zhang M; Liang X; Wang L; Cao Y; Song W; Shi J; Lai J; Jiang C
    Nat Plants; 2019 Dec; 5(12):1297-1308. PubMed ID: 31819228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spore associated bacteria regulates maize root K
    Selvakumar G; Shagol CC; Kim K; Han S; Sa T
    BMC Plant Biol; 2018 Jun; 18(1):109. PubMed ID: 29871605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Effect of adaptogenic preparations on Na+/H+-antiporter function in plasma membrane of corn root cells under salinity conditions].
    Kovalenko NO; Bilyk ZhI; Palladina TO
    Ukr Biochem J; 2014; 86(5):134-41. PubMed ID: 25816597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A domestication-associated reduction in K
    Cao Y; Liang X; Yin P; Zhang M; Jiang C
    New Phytol; 2019 Apr; 222(1):301-317. PubMed ID: 30461018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A teosinte-derived allele of an HKT1 family sodium transporter improves salt tolerance in maize.
    Zhang M; Li Y; Liang X; Lu M; Lai J; Song W; Jiang C
    Plant Biotechnol J; 2023 Jan; 21(1):97-108. PubMed ID: 36114820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods.
    Cuin TA; Bose J; Stefano G; Jha D; Tester M; Mancuso S; Shabala S
    Plant Cell Environ; 2011 Jun; 34(6):947-961. PubMed ID: 21342209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The classical SOS pathway confers natural variation of salt tolerance in maize.
    Zhou X; Li J; Wang Y; Liang X; Zhang M; Lu M; Guo Y; Qin F; Jiang C
    New Phytol; 2022 Oct; 236(2):479-494. PubMed ID: 35633114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The SOS1 transporter of Physcomitrella patens mediates sodium efflux in planta.
    Fraile-Escanciano A; Kamisugi Y; Cuming AC; Rodríguez-Navarro A; Benito B
    New Phytol; 2010 Nov; 188(3):750-61. PubMed ID: 20696009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Co-expression of SpSOS1 and SpAHA1 in transgenic Arabidopsis plants improves salinity tolerance.
    Fan Y; Yin X; Xie Q; Xia Y; Wang Z; Song J; Zhou Y; Jiang X
    BMC Plant Biol; 2019 Feb; 19(1):74. PubMed ID: 30764771
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exogenous Pi supplementation improved the salt tolerance of maize (Zea mays L.) by promoting Na
    Sun Y; Mu C; Zheng H; Lu S; Zhang H; Zhang X; Liu X
    Sci Rep; 2018 Nov; 8(1):16203. PubMed ID: 30385783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of natural genetic variation identifies multiple genes involved in salt tolerance in maize.
    Sandhu D; Pudussery MV; Kumar R; Pallete A; Markley P; Bridges WC; Sekhon RS
    Funct Integr Genomics; 2020 Mar; 20(2):261-275. PubMed ID: 31522293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential expression of ion transporters and aquaporins in leaves may contribute to different salt tolerance in Malus species.
    Liu C; Li C; Liang D; Wei Z; Zhou S; Wang R; Ma F
    Plant Physiol Biochem; 2012 Sep; 58():159-65. PubMed ID: 22819861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential salinity-induced variations in the activity of H⁺-pumps and Na⁺/H⁺ antiporters that are involved in cytoplasm ion homeostasis as a function of genotype and tolerance level in rice cell lines.
    Pons R; Cornejo MJ; Sanz A
    Plant Physiol Biochem; 2011 Dec; 49(12):1399-409. PubMed ID: 22078377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.