These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31924780)

  • 1. Midwinter Arctic leads form and dissipate low clouds.
    Li X; Krueger SK; Strong C; Mace GG; Benson S
    Nat Commun; 2020 Jan; 11(1):206. PubMed ID: 31924780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model simulations of the Arctic atmospheric boundary-layer from the SHEBA year.
    Tjernström M; Zagar M; Svensson G
    Ambio; 2004 Jun; 33(4-5):221-7. PubMed ID: 15264600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. July 2012 Greenland melt extent enhanced by low-level liquid clouds.
    Bennartz R; Shupe MD; Turner DD; Walden VP; Steffen K; Cox CJ; Kulie MS; Miller NB; Pettersen C
    Nature; 2013 Apr; 496(7443):83-6. PubMed ID: 23552947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Global and Arctic climate sensitivity enhanced by changes in North Pacific heat flux.
    Praetorius S; Rugenstein M; Persad G; Caldeira K
    Nat Commun; 2018 Aug; 9(1):3124. PubMed ID: 30087327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Covariance between Arctic sea ice and clouds within atmospheric state regimes at the satellite footprint level.
    Taylor PC; Kato S; Xu KM; Cai M
    J Geophys Res Atmos; 2015 Dec; 120(24):12656-12678. PubMed ID: 27818851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Select strengths and biases of models in representing the Arctic winter boundary layer over sea ice: the Larcform 1 single column model intercomparison.
    Pithan F; Ackerman A; Angevine WM; Hartung K; Ickes L; Kelley M; Medeiros B; Sandu I; Steeneveld GJ; Sterk H; Svensson G; Vaillancourt PA; Zadra A
    J Adv Model Earth Syst; 2016 Sep; 8(3):1345-1357. PubMed ID: 28966718
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Clouds and Blowing Snow on Surface and Atmospheric Boundary Layer Properties Over Dome C, Antarctica.
    Ganeshan M; Yang Y; Palm SP
    J Geophys Res Atmos; 2022 Nov; 127(21):e2022JD036801. PubMed ID: 37035762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process-model simulations of cloud albedo enhancement by aerosols in the Arctic.
    Kravitz B; Wang H; Rasch PJ; Morrison H; Solomon AB
    Philos Trans A Math Phys Eng Sci; 2014 Dec; 372(2031):. PubMed ID: 25404677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High cloud coverage over melted areas dominates the impact of clouds on the albedo feedback in the Arctic.
    He M; Hu Y; Chen N; Wang D; Huang J; Stamnes K
    Sci Rep; 2019 Jul; 9(1):9529. PubMed ID: 31266977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radiative controls by clouds and thermodynamics shape surface temperatures and turbulent fluxes over land.
    Ghausi SA; Tian Y; Zehe E; Kleidon A
    Proc Natl Acad Sci U S A; 2023 Jul; 120(29):e2220400120. PubMed ID: 37428906
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Satellite Observations to Evaluate Model Microphysical Representation of Arctic Mixed-Phase Clouds.
    Shaw J; McGraw Z; Bruno O; Storelvmo T; Hofer S
    Geophys Res Lett; 2022 Feb; 49(3):e2021GL096191. PubMed ID: 35845251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spaceborne Evidence That Ice-Nucleating Particles Influence High-Latitude Cloud Phase.
    Carlsen T; David RO
    Geophys Res Lett; 2022 Jul; 49(14):e2022GL098041. PubMed ID: 36249281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emerging Trends in Arctic Solar Absorption.
    Sledd A; L'Ecuyer TS
    Geophys Res Lett; 2021 Dec; 48(24):e2021GL095813. PubMed ID: 35847446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ARCTIC CHANGE AND POSSIBLE INFLUENCE ON MID-LATITUDE CLIMATE AND WEATHER: A US CLIVAR White Paper.
    Cohen J; Zhang X; Francis J; Jung T; Kwok R; Overland J; Ballinger T; Blackport R; Bhatt US; Chen H; Coumou D; Feldstein S; Handorf D; Hell M; Henderson G; Ionita M; Kretschmer M; Laliberte F; Lee S; Linderholm H; Maslowski W; Rigor I; Routson C; Screen J; Semmler T; Singh D; Smith D; Stroeve J; Taylor PC; Vihma T; Wang M; Wang S; Wu Y; Wendisch M; Yoon J
    US CLIVAR Rep; 2018 Mar; n/a():. PubMed ID: 31633127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing surface albedo signifies a growing importance of clouds for Greenland Ice Sheet meltwater production.
    Ryan JC; Smith LC; Cooley SW; Pearson B; Wever N; Keenan E; Lenaerts JTM
    Nat Commun; 2022 Jul; 13(1):4205. PubMed ID: 35864084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds.
    Zamora LM; Kahn RA; Eckhardt S; McComiskey A; Sawamura P; Moore R; Stohl A
    Atmos Chem Phys; 2017 Jun; 17(12):7311-7332. PubMed ID: 32849860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling between lower-tropospheric convective mixing and low-level clouds: Physical mechanisms and dependence on convection scheme.
    Vial J; Bony S; Dufresne JL; Roehrig R
    J Adv Model Earth Syst; 2016 Dec; 8(4):1892-1911. PubMed ID: 28239438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seasonal Variations of Arctic Low-Level Clouds and Its Linkage to Sea Ice Seasonal Variations.
    Yu Y; Taylor PC; Cai M
    J Geophys Res Atmos; 2019 Nov; 124(22):12206-12226. PubMed ID: 32025450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloud-driven modulations of Greenland ice sheet surface melt.
    Niwano M; Hashimoto A; Aoki T
    Sci Rep; 2019 Jul; 9(1):10380. PubMed ID: 31316097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How Does a Raindrop Grow?: Precipitation in natural clouds may develop from ice crystals or from large hygroscopic aerosols.
    Braham RR
    Science; 1959 Jan; 129(3342):123-9. PubMed ID: 17745322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.