These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 3192511)

  • 21. Succinate transport by free-living forms of Rhizobium japonicum.
    McAllister CF; Lepo JE
    J Bacteriol; 1983 Mar; 153(3):1155-62. PubMed ID: 6402487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anthranilate-promoted iron uptake in Rhizobium leguminosarum.
    Rioux CR; Jordan DC; Rattray JB
    Arch Biochem Biophys; 1986 Jul; 248(1):183-9. PubMed ID: 3729414
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of sulfate transport in Desulfovibrio desulfuricans.
    Cypionka H
    Arch Microbiol; 1989; 152(3):237-43. PubMed ID: 2476099
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temperature jump as a new technique to study the kinetics of fast transport of protons across membranes.
    Krishnamoorthy G
    Biochemistry; 1986 Oct; 25(21):6666-71. PubMed ID: 3024717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transport of glucose and cellobiose by Candida wickerhamii and Clavispora lusitaniae.
    Freer SN; Greene RV
    J Biol Chem; 1990 Aug; 265(22):12864-8. PubMed ID: 2115884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protoporphyrin formation in Rhizobium japonicum.
    Keithly JH; Nadler KD
    J Bacteriol; 1983 May; 154(2):838-45. PubMed ID: 6841317
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A role for tungsten in the biology of Campylobacter jejuni: tungstate stimulates formate dehydrogenase activity and is transported via an ultra-high affinity ABC system distinct from the molybdate transporter.
    Smart JP; Cliff MJ; Kelly DJ
    Mol Microbiol; 2009 Nov; 74(3):742-57. PubMed ID: 19818021
    [TBL] [Abstract][Full Text] [Related]  

  • 28. delta-Aminolevulinate uptake by Rhizobium bacteroids and its limitation by the peribacteroid membrane in Legume nodules.
    Herrada G; Puppo A; Rigaud J
    Biochem Biophys Res Commun; 1992 May; 184(3):1324-30. PubMed ID: 1590795
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Energy-dependent transport of nickel by Clostridium pasteurianum.
    Bryson MF; Drake HL
    J Bacteriol; 1988 Jan; 170(1):234-8. PubMed ID: 3335482
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bradyrhizobium japonicum mutants defective in nitrogen fixation and molybdenum metabolism.
    Maier RJ; Graham L; Keefe RG; Pihl T; Smith E
    J Bacteriol; 1987 Jun; 169(6):2548-54. PubMed ID: 3473063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mutational analysis of genes of the mod locus involved in molybdenum transport, homeostasis, and processing in Azotobacter vinelandii.
    Mouncey NJ; Mitchenall LA; Pau RN
    J Bacteriol; 1995 Sep; 177(18):5294-302. PubMed ID: 7665518
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Properties of the periplasmic nitrate reductases from Paracoccus pantotrophus and Escherichia coli after growth in tungsten-supplemented media.
    Gates AJ; Hughes RO; Sharp SR; Millington PD; Nilavongse A; Cole JA; Leach ER; Jepson B; Richardson DJ; Butler CS
    FEMS Microbiol Lett; 2003 Mar; 220(2):261-9. PubMed ID: 12670690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immunological evidence for the capability of free-living Rhizobium japonicum to synthesize a portion of a nitrogenase component.
    Bishop PE; Evans HJ; Daniel RM; Hampton RO
    Biochim Biophys Acta; 1975 Feb; 381(2):248-56. PubMed ID: 803382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dependence of mammalian putrescine and spermidine transport on plasma-membrane potential: identification of an amiloride binding site on the putrescine carrier.
    Poulin R; Zhao C; Verma S; Charest-Gaudreault R; Audette M
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1283-91. PubMed ID: 9494098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mutant Strain of Bradyrhizobium japonicum with Increased Symbiotic N(2) Fixation Rates and Altered Mo Metabolism Properties.
    Maier RJ; Graham L
    Appl Environ Microbiol; 1990 Aug; 56(8):2341-2346. PubMed ID: 16348247
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of salts and ionophores on proline transport in a moderately halopholic halotolerant bacterium.
    Peleg E; Tietz A; Friedberg I
    Biochim Biophys Acta; 1980 Feb; 596(1):118-28. PubMed ID: 6766316
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Involvement of oxyleghaemoglobin and cytochrome P-450 in an efficient oxidative phosphorylation pathway which supports nitrogen fixation in Rhizobium.
    Appleby CA; Turner GL; Macnicol PK
    Biochim Biophys Acta; 1975 Jun; 387(3):461-74. PubMed ID: 1169973
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tungsten transport protein A (WtpA) in Pyrococcus furiosus: the first member of a new class of tungstate and molybdate transporters.
    Bevers LE; Hagedoorn PL; Krijger GC; Hagen WR
    J Bacteriol; 2006 Sep; 188(18):6498-505. PubMed ID: 16952940
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence for mitochondrial localization of N-(4-methylphenylsulfonyl)-N'-(4-chlorophenyl)urea in human colon adenocarcinoma cells.
    Houghton PJ; Bailey FC; Houghton JA; Murti KG; Howbert JJ; Grindey GB
    Cancer Res; 1990 Feb; 50(3):664-8. PubMed ID: 2297707
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [The effect of nitrate and nitrite on the respiration and cytochrome system of Rhizobium lupini].
    Romanov VI; Fedulova NG; Korolev AV; Kretovich VL
    Mikrobiologiia; 1976; 45(1):85-91. PubMed ID: 940501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.