These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31925590)

  • 1. Effects of velopharyngeal openings on flow characteristics of nasal emission.
    Sundström E; Boyce S; Oren L
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1447-1459. PubMed ID: 31925590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Change in aeroacoustic sound mechanism during sibilant sound with different velopharyngeal opening sizes.
    Sundström E; Oren L
    Med Biol Eng Comput; 2021 Apr; 59(4):937-945. PubMed ID: 33797695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound production mechanisms of audible nasal emission during the sibilant /s/.
    Sundström E; Oren L
    J Acoust Soc Am; 2019 Dec; 146(6):4199. PubMed ID: 31893718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharyngeal flow simulations during sibilant sound in a patient-specific model with velopharyngeal insufficiency.
    Sundström E; Oren L
    J Acoust Soc Am; 2019 May; 145(5):3137. PubMed ID: 31153316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Nasal Emission During Speech Production: A Review of Types, Terminology, and Causality.
    Oren L; Kummer A; Boyce S
    Cleft Palate Craniofac J; 2020 Jan; 57(1):123-126. PubMed ID: 31262198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Velopharyngeal Functions Using Computational Fluid Dynamics Simulations.
    Huang H; Cheng X; Wang Y; Huang D; Wei Y; Yin H; Shi B; Li J
    Ann Otol Rhinol Laryngol; 2019 Aug; 128(8):742-748. PubMed ID: 30957524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectrum Effects of a Velopharyngeal Opening in Singing.
    Gill BP; Lee J; Lã FMB; Sundberg J
    J Voice; 2020 May; 34(3):346-351. PubMed ID: 30587334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of oral articulation on the acoustic characteristics of nasalized vowels.
    Rong P; Kuehn DP
    J Acoust Soc Am; 2010 Apr; 127(4):2543-53. PubMed ID: 20370036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using High-Speed Nasopharyngoscopy to Quantify the Bubbling Above the Velopharyngeal Valve in Cases of Nasal Rustle.
    Oren L; Rollins M; Padakanti S; Kummer A; Gutmark E; Boyce S
    Cleft Palate Craniofac J; 2020 May; 57(5):637-645. PubMed ID: 31867995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secretion Bubbling as the Sound Mechanism for Nasal Rustle: A Perceptual Study.
    Oren L; Kummer AW; Boyce S
    J Speech Lang Hear Res; 2022 Mar; 65(3):869-877. PubMed ID: 35130034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of velar resistance on speech aerodynamics.
    Laine T; Warren DW; Dalston RM; Morr KE
    Eur J Orthod; 1989 Feb; 11(1):52-8. PubMed ID: 2714393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal characteristics of velopharyngeal function in children.
    Leeper HA; Tissington ML; Munhall KG
    Cleft Palate Craniofac J; 1998 May; 35(3):215-21. PubMed ID: 9603555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-flow measurements for selected oral and nasal sound segments produced by normal adults.
    Andreassen ML; Smith BE; Guyette TW
    Cleft Palate Craniofac J; 1992 Jan; 29(1):1-9. PubMed ID: 1547243
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationships between integrated oral-nasal differential pressure and velopharyngeal closure.
    Hinton VA; Warren DW
    Cleft Palate Craniofac J; 1995 Jul; 32(4):306-10. PubMed ID: 7548103
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical investigation of effects of tongue articulation and velopharyngeal closure on the production of sibilant [s].
    Lu H; Yoshinaga T; Li C; Nozaki K; Iida A; Tsubokura M
    Sci Rep; 2022 Sep; 12(1):15361. PubMed ID: 36100616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral findings for vowels [a] and [ã] at different velopharyngeal openings.
    Lima-Gregio AM; Dutka-Souza Jde C; Marino VC; Pegoraro-Krook MI; Barbosa PA
    Pro Fono; 2010; 22(4):515-20. PubMed ID: 21271109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of velopharyngeal gap size in patients with hypernasality, hypernasality and nasal emission, or nasal turbulence (rustle) as the primary speech characteristic.
    Kummer AW; Curtis C; Wiggs M; Lee L; Strife JL
    Cleft Palate Craniofac J; 1992 Mar; 29(2):152-6. PubMed ID: 1571348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maxillary distraction versus orthognathic surgery in cleft lip and palate patients: effects on speech and velopharyngeal function.
    Chua HD; Whitehill TL; Samman N; Cheung LK
    Int J Oral Maxillofac Surg; 2010 Jul; 39(7):633-40. PubMed ID: 20413269
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Perceptual evaluation of speech and velopharyngeal function in children with and without cleft palate and the relationship to nasal airflow patterns.
    Dotevall H; Lohmander-Agerskov A; Ejnell H; Bake B
    Cleft Palate Craniofac J; 2002 Jul; 39(4):409-24. PubMed ID: 12071789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Managing the distinctiveness of phonemic nasal vowels: articulatory evidence from Hindi.
    Shosted R; Carignan C; Rong P
    J Acoust Soc Am; 2012 Jan; 131(1):455-65. PubMed ID: 22280607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.