BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31925804)

  • 1. Examination of the dielectrophoretic spectra of MCF7 breast cancer cells and leukocytes.
    Çağlayan Z; Demircan Yalçın Y; Külah H
    Electrophoresis; 2020 Mar; 41(5-6):345-352. PubMed ID: 31925804
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis.
    Çağlayan Arslan Z; Demircan Yalçın Y; Külah H
    Electrophoresis; 2022 Jul; 43(13-14):1531-1544. PubMed ID: 35318696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field-induced effects on neuronal cell biology accompanying dielectrophoretic trapping.
    Heida T
    Adv Anat Embryol Cell Biol; 2003; 173():III-IX, 1-77. PubMed ID: 12901336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells.
    Aghaamoo M; Aghilinejad A; Chen X; Xu J
    Electrophoresis; 2019 May; 40(10):1486-1493. PubMed ID: 30740752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation.
    Gascoyne PR; Shim S; Noshari J; Becker FF; Stemke-Hale K
    Electrophoresis; 2013 Apr; 34(7):1042-50. PubMed ID: 23172680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation of circulating tumor cells by dielectrophoresis.
    Gascoyne PR; Shim S
    Cancers (Basel); 2014 Mar; 6(1):545-79. PubMed ID: 24662940
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis.
    Chen H; Osman SY; Moose DL; Vanneste M; Anderson JL; Henry MD; Anand RK
    Lab Chip; 2023 May; 23(11):2586-2600. PubMed ID: 37185977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation of tumor cells with dielectrophoresis-based microfluidic chip.
    Alshareef M; Metrakos N; Juarez Perez E; Azer F; Yang F; Yang X; Wang G
    Biomicrofluidics; 2013; 7(1):11803. PubMed ID: 24403985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of dielectrophoresis and liquid dielectrophoresis mechanisms for particle capture in a droplet.
    Tsai SL; Hong JL; Chen MK; Jang LS
    Electrophoresis; 2011 Jun; 32(11):1337-47. PubMed ID: 21538398
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highlighting the uniqueness in dielectrophoretic enrichment of circulating tumor cells.
    S Iliescu F; Sim WJ; Heidari H; P Poenar D; Miao J; Taylor HK; Iliescu C
    Electrophoresis; 2019 May; 40(10):1457-1477. PubMed ID: 30676660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free detection of multidrug resistance in K562 cells through isolated 3D-electrode dielectrophoresis.
    Demircan Y; Koyuncuoğlu A; Erdem M; Özgür E; Gündüz U; Külah H
    Electrophoresis; 2015 May; 36(9-10):1149-57. PubMed ID: 25781271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-purity and label-free isolation of circulating tumor cells (CTCs) in a microfluidic platform by using optically-induced-dielectrophoretic (ODEP) force.
    Huang SB; Wu MH; Lin YH; Hsieh CH; Yang CL; Lin HC; Tseng CP; Lee GB
    Lab Chip; 2013 Apr; 13(7):1371-83. PubMed ID: 23389102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dielectrophoresis has broad applicability to marker-free isolation of tumor cells from blood by microfluidic systems.
    Shim S; Stemke-Hale K; Noshari J; Becker FF; Gascoyne PR
    Biomicrofluidics; 2013; 7(1):11808. PubMed ID: 24403990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contactless dielectrophoretic spectroscopy: examination of the dielectric properties of cells found in blood.
    Sano MB; Henslee EA; Schmelz E; Davalos RV
    Electrophoresis; 2011 Nov; 32(22):3164-71. PubMed ID: 22102497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminating dengue-infected hepatic cells (WRL-68) using dielectrophoresis.
    Yafouz B; Kadri NA; Rothan HA; Yusof R; Ibrahim F
    Electrophoresis; 2016 Feb; 37(3):511-8. PubMed ID: 26530354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP).
    Moon HS; Kwon K; Kim SI; Han H; Sohn J; Lee S; Jung HI
    Lab Chip; 2011 Mar; 11(6):1118-25. PubMed ID: 21298159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A microfluidic device for continuous manipulation of biological cells using dielectrophoresis.
    Das D; Biswas K; Das S
    Med Eng Phys; 2014 Jun; 36(6):726-31. PubMed ID: 24388100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-scale electric manipulations of cells and droplets by frequency-modulated dielectrophoresis and electrowetting.
    Fan SK; Huang PW; Wang TT; Peng YH
    Lab Chip; 2008 Aug; 8(8):1325-31. PubMed ID: 18651075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulator-based dielectrophoresis combined with the isomotive AC electric field and applied to single cell analysis.
    Tada S; Eguchi M; Okano K
    Electrophoresis; 2019 May; 40(10):1494-1497. PubMed ID: 30672595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.