These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31926413)

  • 1. High-frequency fluctuations of indoor pressure: A potential driving force for vapor intrusion in urban areas.
    Yao Y; Xiao Y; Luo J; Wang G; Ström J; Suuberg E
    Sci Total Environ; 2020 Mar; 710():136309. PubMed ID: 31926413
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions.
    Patterson BM; Davis GB
    Environ Sci Technol; 2009 Feb; 43(3):650-6. PubMed ID: 19244997
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.
    Shirazi E; Pennell KG
    Environ Sci Process Impacts; 2017 Dec; 19(12):1594-1607. PubMed ID: 29210407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Simulation of Land Drains as a Preferential Pathway for Vapor Intrusion into Buildings.
    Yao Y; Mao F; Ma S; Yao Y; Suuberg EM; Tang X
    J Environ Qual; 2017 Nov; 46(6):1424-1433. PubMed ID: 29293853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating the role of vadose zone breathing in vapor intrusion from contaminated groundwater.
    Man J; Wang G; Chen Q; Yao Y
    J Hazard Mater; 2021 Aug; 416():126272. PubMed ID: 34492998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling capillary fringe effect on petroleum vapor intrusion from groundwater contamination.
    Yao Y; Mao F; Xiao Y; Luo J
    Water Res; 2019 Mar; 150():111-119. PubMed ID: 30508708
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of vapor source-building separation and building construction on soil vapor intrusion as studied with a three-dimensional numerical model.
    Abreu LD; Johnson PC
    Environ Sci Technol; 2005 Jun; 39(12):4550-61. PubMed ID: 16047792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluid Flow Model for Predicting the Intrusion Rate of Subsurface Contaminant Vapors into Buildings.
    McAlary TA; Gallinatti J; Thrupp G; Wertz W; Mali D; Dawson H
    Environ Sci Technol; 2018 Aug; 52(15):8438-8445. PubMed ID: 29939732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contaminant sorption on soil and indoor materials and its possible impact on transients in vapor intrusion- An example based upon trichloroethylene (TCE).
    Xie S; Strom JGV; Suuberg EM
    J Hazard Mater; 2023 Mar; 446():. PubMed ID: 37138668
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of vapor intrusion models.
    Yao Y; Shen R; Pennell KG; Suuberg EM
    Environ Sci Technol; 2013 Mar; 47(6):2457-70. PubMed ID: 23360069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examining the role of sub-foundation soil texture in chlorinated vapor intrusion from groundwater sources with a two-layer numerical model.
    Yao Y; Xiao Y; Mao F; Chen H; Verginelli I
    J Hazard Mater; 2018 Oct; 359():544-553. PubMed ID: 30096605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical study of building pressure cycling to generate sub-foundation aerobic barrier for mitigating petroleum vapor intrusion.
    Liu Y; Verginelli I; Yao Y
    Sci Total Environ; 2021 Jul; 779():146460. PubMed ID: 33744589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Role of Soil Texture in Vapor Intrusion from Groundwater Sources.
    Yao Y; Wang Y; Zhong Z; Tang M; Suuberg EM
    J Environ Qual; 2017 Jul; 46(4):776-784. PubMed ID: 28783798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field Study of Soil Vapor Extraction for Reducing Off-Site Vapor Intrusion.
    Stewart L; Lutes C; Truesdale R; Schumacher B; Zimmerman JH; Connell R
    Ground Water Monit Remediat; 2020 Feb; 40(1):74-85. PubMed ID: 33414610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of vapor intrusion using controlled building pressure.
    McHugh TE; Beckley L; Bailey D; Gorder K; Dettenmaier E; Rivera-Duarte I; Brock S; MacGregor IC
    Environ Sci Technol; 2012 May; 46(9):4792-9. PubMed ID: 22486634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An examination of the building pressure cycling technique as a tool in vapor intrusion investigations with analytical simulations.
    Yao Y; Zuo J; Luo J; Chen Q; Ström J; Suuberg E
    J Hazard Mater; 2020 May; 389():121915. PubMed ID: 31882341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical modeling of the subsurface volatile organic vapor concentration in vapor intrusion.
    Shen R; Pennell KG; Suuberg EM
    Chemosphere; 2014 Jan; 95():140-9. PubMed ID: 24034829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Examining the use of USEPA's Generic Attenuation Factor in determining groundwater screening levels for vapor intrusion.
    Yao Y; Verginelli I; Suuberg EM; Eklund B
    Ground Water Monit Remediat; 2018; 38(2):79-89. PubMed ID: 30524180
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal moisture content variability beneath and external to a building and the potential effects on vapor intrusion risk assessment.
    Tillman FD; Weaver JW
    Sci Total Environ; 2007 Jun; 379(1):1-15. PubMed ID: 17442380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental assessments on schools located on or near former industrial facilities: Feedback on attenuation factors for the prediction of indoor air quality.
    Derycke V; Coftier A; Zornig C; Léprond H; Scamps M; Gilbert D
    Sci Total Environ; 2018 Jun; 626():754-761. PubMed ID: 29396339
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.