These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31926473)

  • 41. Anaerobic digestibility of estrogens in wastewater sludge: effect of ultrasonic pretreatment.
    Chawla C; Sarkar S; Ali S; Rehmann L; Nakhla G; Ray MB
    J Environ Manage; 2014 Dec; 145():307-13. PubMed ID: 25098232
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cultivation of algal-bacterial granular sludge and degradation characteristics of tetracycline.
    Wang S; Zhang Y; Ge H; Hou H; Zhang H; Pi K
    Water Environ Res; 2023 Mar; 95(3):e10846. PubMed ID: 36789451
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Biodegradation and adsorption of antibiotics in the activated sludge process.
    Li B; Zhang T
    Environ Sci Technol; 2010 May; 44(9):3468-73. PubMed ID: 20384353
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biosorption of Cu(II) by powdered anaerobic granular sludge from aqueous medium.
    Zhou X; Chen C; Wang A; Jiang G; Liu L; Xu X; Yuan Y; Lee DJ; Ren N
    Water Sci Technol; 2013; 68(1):91-8. PubMed ID: 23823544
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Anaerobic degradation of linear alkylbenzene sulfonate.
    Mogensen AS; Haagensen F; Ahring BK
    Environ Toxicol Chem; 2003 Apr; 22(4):706-11. PubMed ID: 12685701
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contribution of antibiotics to the fate of antibiotic resistance genes in anaerobic treatment processes of swine wastewater: A review.
    Cheng D; Hao Ngo H; Guo W; Wang Chang S; Duc Nguyen D; Liu Y; Zhang X; Shan X; Liu Y
    Bioresour Technol; 2020 Mar; 299():122654. PubMed ID: 31917094
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Evaluation of a continuous flow microbial fuel cell for treating synthetic swine wastewater containing antibiotics.
    Cheng D; Ngo HH; Guo W; Chang SW; Nguyen DD; Liu Y; Liu Y; Deng L; Chen Z
    Sci Total Environ; 2021 Feb; 756():144133. PubMed ID: 33279188
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Biosorption equilibrium, kinetic and thermodynamic modelling of naphthalene removal from aqueous solution onto modified spent tea leaves.
    Agarry SE; Ogunleye OO; Aworanti OA
    Environ Technol; 2013; 34(5-8):825-39. PubMed ID: 23837334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal mechanisms for extremely high-level fluoroquinolone antibiotics in pharmaceutical wastewater treatment plants.
    Guo X; Yan Z; Zhang Y; Kong X; Kong D; Shan Z; Wang N
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8769-8777. PubMed ID: 28213708
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The contribution of selected organic substrates to the anaerobic cometabolism of sulfamethazine.
    Oliveira BM; Zaiat M; Oliveira GHD
    J Environ Sci Health B; 2019; 54(4):263-270. PubMed ID: 30628525
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Variation of antibiotics in sludge pretreatment and anaerobic digestion processes: Degradation and solid-liquid distribution.
    Zhang X; Li R
    Bioresour Technol; 2018 May; 255():266-272. PubMed ID: 29428781
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The performance of aerobic granular sludge for simulated swine wastewater treatment and the removal mechanism of tetracycline.
    Wang X; Li J; Zhang X; Chen Z; Shen J; Kang J
    J Hazard Mater; 2021 Apr; 408():124762. PubMed ID: 33373952
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors.
    Dorival-García N; Zafra-Gómez A; Navalón A; González J; Vílchez JL
    Sci Total Environ; 2013 Jan; 442():317-28. PubMed ID: 23178836
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Removal mechanisms and kinetics of trace tetracycline by two types of activated sludge treating freshwater sewage and saline sewage.
    Li B; Zhang T
    Environ Sci Pollut Res Int; 2013 May; 20(5):3024-33. PubMed ID: 23054779
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Role of extracellular polymeric substances in biosorption of dye wastewater using aerobic granular sludge.
    Wei D; Wang B; Ngo HH; Guo W; Han F; Wang X; Du B; Wei Q
    Bioresour Technol; 2015 Jun; 185():14-20. PubMed ID: 25746473
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Equilibrium, kinetic and thermodynamic studies on the biosorption of reactive acid dye on Enteromorpha flexuosa and Gracilaria corticata.
    Sivasamy A; Nethaji S; Nisha LL
    Environ Sci Pollut Res Int; 2012 Jun; 19(5):1687-95. PubMed ID: 22161297
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Biodegradation of three tetracyclines in swine wastewater.
    Chang BV; Hsu FY; Liao HY
    J Environ Sci Health B; 2014; 49(6):449-55. PubMed ID: 24762183
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adsorption behavior of diclofenac-containing wastewater on three kinds of sewage sludge.
    Yan J; Zhang X; Lin W; Yang C; Ren Y
    Water Sci Technol; 2019 Aug; 80(4):717-726. PubMed ID: 31661451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Biosorption of aquatic copper (II) by mushroom biomass Pleurotus eryngii: kinetic and isotherm studies.
    Kan SH; Sun BY; Xu F; Song QX; Zhang SF
    Water Sci Technol; 2015; 71(2):283-8. PubMed ID: 25633953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation of DEHP biodegradation and sorption during the anaerobic digestion of secondary sludge.
    Fountoulakis MS; Stamatelatou K; Batstone DJ; Lyberatos G
    Water Sci Technol; 2006; 54(4):119-28. PubMed ID: 17037177
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.