BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31926590)

  • 1. Evaluation of human nasal cartilage nonlinear and rate dependent mechanical properties.
    Chang B; Reighard C; Flanagan C; Hollister S; Zopf D
    J Biomech; 2020 Feb; 100():109549. PubMed ID: 31926590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical evaluation of hMSCs-based engineered cartilage for chondral tissue regeneration.
    Gullotta F; Izzo D; Scalera F; Palazzo B; Martin I; Sannino A; Gervaso F
    J Mech Behav Biomed Mater; 2018 Oct; 86():294-304. PubMed ID: 30006278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
    Ruiz-Cantu L; Gleadall A; Faris C; Segal J; Shakesheff K; Yang J
    Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110578. PubMed ID: 32228894
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical, permeability, and degradation properties of 3D designed poly(1,8 octanediol-co-citrate) scaffolds for soft tissue engineering.
    Jeong CG; Hollister SJ
    J Biomed Mater Res B Appl Biomater; 2010 Apr; 93(1):141-9. PubMed ID: 20091910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generating Mechanically Stable, Pediatric, and Scaffold-Free Nasal Cartilage Constructs In Vitro.
    Akbari P; Waldman SD; Propst EJ; Cushing SL; Weber JF; Yeger H; Farhat WA
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1077-1084. PubMed ID: 27829311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical evaluation of human and porcine auricular cartilage.
    Zopf DA; Flanagan CL; Nasser HB; Mitsak AG; Huq FS; Rajendran V; Green GE; Hollister SJ
    Laryngoscope; 2015 Aug; 125(8):E262-8. PubMed ID: 25891012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pore orientation mediated control of mechanical behavior of scaffolds and its application in cartilage-mimetic scaffold design.
    Arora A; Kothari A; Katti DS
    J Mech Behav Biomed Mater; 2015 Nov; 51():169-83. PubMed ID: 26256472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A pilot study comparing mechanical properties of tissue-engineered cartilages and various endogenous cartilages.
    Pappa AK; Soleimani S; Caballero M; Halevi AE; van Aalst JA
    Clin Biomech (Bristol, Avon); 2017 Dec; 50():105-109. PubMed ID: 29055244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental verification of the roles of intrinsic matrix viscoelasticity and tension-compression nonlinearity in the biphasic response of cartilage.
    Huang CY; Soltz MA; Kopacz M; Mow VC; Ateshian GA
    J Biomech Eng; 2003 Feb; 125(1):84-93. PubMed ID: 12661200
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between micro-porosity, water permeability and mechanical behavior in scaffolds for cartilage engineering.
    Vikingsson L; Claessens B; Gómez-Tejedor JA; Gallego Ferrer G; Gómez Ribelles JL
    J Mech Behav Biomed Mater; 2015 Aug; 48():60-69. PubMed ID: 25913609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue-engineered cartilage for facial plastic surgery.
    Watson D; Reuther MS
    Curr Opin Otolaryngol Head Neck Surg; 2014 Aug; 22(4):300-6. PubMed ID: 24874211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic response of immature bovine articular cartilage in tension and compression, and nonlinear viscoelastic modeling of the tensile response.
    Park S; Ateshian GA
    J Biomech Eng; 2006 Aug; 128(4):623-30. PubMed ID: 16813454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering.
    Griffin MF; Premakumar Y; Seifalian AM; Szarko M; Butler PE
    J Mater Sci Mater Med; 2016 Jan; 27(1):11. PubMed ID: 26676857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconfined compression of articular cartilage: nonlinear behavior and comparison with a fibril-reinforced biphasic model.
    Fortin M; Soulhat J; Shirazi-Adl A; Hunziker EB; Buschmann MD
    J Biomech Eng; 2000 Apr; 122(2):189-95. PubMed ID: 10834160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale mechanics of tissue-engineered cartilage grown from human chondrocytes and human-induced pluripotent stem cells.
    Middendorf JM; Diamantides N; Shortkroff S; Dugopolski C; Kennedy S; Cohen I; Bonassar LJ
    J Orthop Res; 2020 Sep; 38(9):1965-1973. PubMed ID: 32125023
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Finite element simulation of location- and time-dependent mechanical behavior of chondrocytes in unconfined compression tests.
    Wu JZ; Herzog W
    Ann Biomed Eng; 2000 Mar; 28(3):318-30. PubMed ID: 10784096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parametric finite element analysis of physical stimuli resulting from mechanical stimulation of tissue engineered cartilage.
    Babalola OM; Bonassar LJ
    J Biomech Eng; 2009 Jun; 131(6):061014. PubMed ID: 19449968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced nutrient transport improves the depth-dependent properties of tri-layered engineered cartilage constructs with zonal co-culture of chondrocytes and MSCs.
    Kim M; Farrell MJ; Steinberg DR; Burdick JA; Mauck RL
    Acta Biomater; 2017 Aug; 58():1-11. PubMed ID: 28629894
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combination of bioactive factors and IEIK13 self-assembling peptide hydrogel promotes cartilage matrix production by human nasal chondrocytes.
    Dufour A; Buffier M; Vertu-Ciolino D; Disant F; Mallein-Gerin F; Perrier-Groult E
    J Biomed Mater Res A; 2019 Apr; 107(4):893-903. PubMed ID: 30650239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering.
    Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z
    J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.