BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31926932)

  • 1. Modeling and control of mosquito-borne diseases with Wolbachia and insecticides.
    Li Y; Liu X
    Theor Popul Biol; 2020 Apr; 132():82-91. PubMed ID: 31926932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of an impulsive reaction-diffusion mosquitoes model with multiple control measures.
    Li Y; Zhao H; Wang K
    Math Biosci Eng; 2023 Jan; 20(1):775-806. PubMed ID: 36650789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling and dynamics of Wolbachia-infected male releases and mating competition on mosquito control.
    Zhang X; Liu Q; Zhu H
    J Math Biol; 2020 Jul; 81(1):243-276. PubMed ID: 32458175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sex-structured model with birth pulse and release strategy for the spread of Wolbachia in mosquito population.
    Li Y; Liu X
    J Theor Biol; 2018 Jul; 448():53-65. PubMed ID: 29625205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of age-stage structural models to seek optimal Wolbachia-infected male mosquito releases for mosquito-borne disease control.
    Zheng B; Liu X; Tang M; Xi Z; Yu J
    J Theor Biol; 2019 Jul; 472():95-109. PubMed ID: 30991073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mosquito Population Suppression Model by Releasing Wolbachia-Infected Males.
    Liu Y; Yu J; Li J
    Bull Math Biol; 2022 Sep; 84(11):121. PubMed ID: 36112293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mosquito Control Based on Pesticides and Endosymbiotic Bacterium Wolbachia.
    Hu L; Yang C; Hui Y; Yu J
    Bull Math Biol; 2021 Apr; 83(5):58. PubMed ID: 33847843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbiotic
    Minwuyelet A; Petronio GP; Yewhalaw D; Sciarretta A; Magnifico I; Nicolosi D; Di Marco R; Atenafu G
    Front Microbiol; 2023; 14():1267832. PubMed ID: 37901801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the Effects of Augmentation Strategies on the Control of Dengue Fever With an Impulsive Differential Equation.
    Zhang X; Tang S; Cheke RA; Zhu H
    Bull Math Biol; 2016 Oct; 78(10):1968-2010. PubMed ID: 27734242
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the control of dengue by releasing Wolbachia-infected male mosquitoes through a delay differential equation model.
    Zheng B; Chen LH; Sun QW
    Math Biosci Eng; 2019 Jun; 16(5):5531-5550. PubMed ID: 31499724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of large-scale deployment of
    Durovni B; Saraceni V; Eppinghaus A; Riback TIS; Moreira LA; Jewell NP; Dufault SM; O'Neill SL; Simmons CP; Tanamas SK; Anders KL
    F1000Res; 2019; 8():1328. PubMed ID: 33447371
    [No Abstract]   [Full Text] [Related]  

  • 12. The optimal strategy of incompatible insect technique (IIT) using Wolbachia and the application to malaria control.
    Matsufuji T; Seirin-Lee S
    J Theor Biol; 2023 Jul; 569():111519. PubMed ID: 37254297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion.
    Garcia GA; Sylvestre G; Aguiar R; da Costa GB; Martins AJ; Lima JBP; Petersen MT; Lourenço-de-Oliveira R; Shadbolt MF; Rašić G; Hoffmann AA; Villela DAM; Dias FBS; Dong Y; O'Neill SL; Moreira LA; Maciel-de-Freitas R
    PLoS Negl Trop Dis; 2019 Jan; 13(1):e0007023. PubMed ID: 30620733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of a novel Wolbachia infection in Aedes albopictus (Asian tiger mosquito) via embryonic microinjection.
    Xi Z; Dean JL; Khoo C; Dobson SL
    Insect Biochem Mol Biol; 2005 Aug; 35(8):903-10. PubMed ID: 15944085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of mating competitiveness and incomplete cytoplasmic incompatibility on Wolbachia-driven mosquito population suppressio.
    Huang MG; Tang MX; Yu JS; Zheng B
    Math Biosci Eng; 2019 May; 16(5):4741-4757. PubMed ID: 31499687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wolbachia prevalence, diversity, and ability to induce cytoplasmic incompatibility in mosquitoes.
    Sicard M; Bonneau M; Weill M
    Curr Opin Insect Sci; 2019 Aug; 34():12-20. PubMed ID: 31247412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-sex mosquito model for the persistence of Wolbachia.
    Xue L; Manore CA; Thongsripong P; Hyman JM
    J Biol Dyn; 2017 Mar; 11(sup1):216-237. PubMed ID: 27628851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis and control of Aedes Aegypti mosquitoes using sterile-insect techniques with Wolbachia.
    Chinnathambi R; Rihan FA
    Math Biosci Eng; 2022 Aug; 19(11):11154-11171. PubMed ID: 36124585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishing Wolbachia in the wild mosquito population: The effects of wind and critical patch size.
    Liu YF; Sun GW; Wang L; Guo ZM
    Math Biosci Eng; 2019 May; 16(5):4399-4414. PubMed ID: 31499668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wolbachia invasion dynamics of a random mosquito population model with imperfect maternal transmission and incomplete CI.
    Wan H; Wu Y; Fan G; Li D
    J Math Biol; 2024 Apr; 88(6):72. PubMed ID: 38678110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.